Progetto Albarella: recupero di un fontanile

Albarella project: recovery of a spring

C. Arduini, F. Colucci
Assessorato all’Ecologia, Provincia di Milano

Riassunto

Nel generale degrado ambientale che caratterizza la Provincia di Milano il recupero di un fontanile, tipica risorgiva della pianura Padana, riscuote un notevole interesse sia storico che ecologico. Il fontanile Albarella nel territorio comunale di Settimo Milanese ad ovest di Milano, è stato recapito di fognatura per molti anni; nel 1984 dopo la rimozione dello scarico fognario, è partito un progetto di recupero dell’area e collaborazione con il Comune di Settimo Milanese e gli alunni della scuola media «Sarpa». Il recupero si è svolto in varie fasi: dapprima si è stata la rimozione di melma dalla testa e dall’asta del fontanile per mezzo di macchinari specifici; quindi è iniziato il riassetto ancora in corso, dell’area circostante con pianteratura di essenze arboree rustiche (olmi, querce, ontani, carpini). E’ stato, poi, effettuato uno studio sull’evoluzione della popolazione macrobentonica e si è notato un lento arricchimento di taxa pur restando ancora dominanti quelli tolleranti.

Summary

In the general environmental degradation of the area around Milan, the recovery of a spring, the typical source in the Padana plain, has a great both historical and ecological interest. The Albarella spring, in the communal territory of Settimo Milanese westward to Milan, has received a sewage discharge for many years. In the 1984, after the elimination of the sewage discharge, a project for the recovery of the area was formed in collaboration with the Ecology Department of Settimo Milanese and with the students of the local middle school. The recovery was carried out in several phases: at first the elimination of the slime from the «testa» and «asta» of the spring has been performed with specific machineries; then the recovery, still in developing, of the surrounding area continued with the planting of some typical trees (oak, elm, alder, hornbeam). Then a study of the evolution of the macrobentonic community has been carried out and a slow enrichment of the above cited species was noted, though the tolerant ones still remain the dominants.

I fontanili, caratteristiche risorgive naturali della valle Padana, sono stati scavati e le loro acque imbrigliate fin dal secolo XI per bonificare le ampie paludi allora esistenti (ALBERGONI, 1973). In particolare nel milanese questo fenomeno ha assunto proporzioni imponenti sia per il numero elevato (7-8 fontanili per kmq) sia per l’accorta utilizzazione delle acque, la cui caratteristica fondamentale, la T costante sui 10-14 °C, consente una particolare pratica colturale: la marcia, prato oligofita stabile in cui è possibile effettuare 6-7 tagli di fieno all’anno grazie al continuo velo d’acqua che scorrendo sulla superficie erbosa, impedisce la formazione del ghiaccio; questa tecnica colturale è attualmente molto ridotta causa gli alti costi di manutenzione a favore della monocultura.

Morfologicamente il fontanile è diviso in testa ed asta: la testa è uno scavo più o meno profondo alimentato da acque che sgorgano attraverso polle o infiltrazioni laterali e vengono convogliate nell’asta o canale fino alle zone di utilizzazione. Generalmente la testa del fontanile è circondata da un bosco misto più o meno esteso composto da robinie, ontani, olmi, pioppi, platani, essenze che hanno sostituito il vecchio querceto.

L’ambiente, creato dall’associazione zona umida - bosco e fitto sottobosco, costituisce un naturale rifiugo per una ricca fauna, rappresentata da uccelli come il Martin pescatore e la gallinella d’acqua, da piccoli mammiferi come la donnola, il riccio e il toponago, da anfibi e rettili. L’ambiente del fontanile si distingue dagli altri ambienti umidi per le caratteristiche peculiari che permettono l’instaurarsi di una notevole ricchezza di specie sia di flora che di fauna: per es. il gambero nostrano di acqua dolce (Austropotamobius pallipes it.) è ancora presente in fontanili con acque pulite. Dato l’interesse e l’importanza dei fontanili nel paesaggio dell’agro milanese sono spesso oggetto di studio; in particolare i funzionari di codesta amministrazione hanno svolto un censimento dei corpi idrici finalizzato, tra l’altro, all’individuazione di zone di particolare interesse naturalistico e paesaggistico allo scopo di tutela ambientale e/o di recupero. In seguito a tali indagini si è individuato un fontanile nel territorio comunale di Settimo Milanese, denominato Albarella, che rispecchia la situazione ricorrente di un ambiente fortemente industrializzato ed antropizzato come l’hinterland milanese. Fino al 1984 il fontanile è stato recapito di uno scarico che immetteva reflui civi-
li all’apice della testa; dopo l’allacciamento della fognotura al collettore consortile, è maturata la collaborazione tra il Comune di Settimo Milanese, scuola media locale e Provincia di Milano per realizzare il recupero dell’area. Dapprima vi è stata la rimozione dei rifiuti e della melma dalla testa e dall’asta del fontanile per mezzo di macchinari specifici, quindi intervento diretto degli alunni con censimento della vegetazione, piantumazione di essenze arboree rustiche, progettazione di sentieri, scale e ponticelli per accedere all’area.

In parallelo si sono effettuati prelievi idrobiologici per valutare l’evoluzione sia della comunità macrobentonica sia della copertura vegetale del fontanile; sono stati anche analizzati alcuni parametri chimico-fisici (vedi tab. 1). Come risulta dalle tabelle 2 e 3 si è avuto un aumento del numero dei taxa nel tempo, pur restando nella fascia dei più tolleranti: sono comparsi dapprima gli Asellidi, quindi i Gasteropodi (Limneidi e Phisidi) e successivamente i Gammaridi e gli Efemerotteri (Baetidi).

La presenza di massicce colonie di Sphaerotilus si è rilevata fino al maggio 1985; la vegetazione acquatica si è man mano arroccitata di specie fino ad arrivare a popolazione mista di Callitriches sp., Polygonum hydropiper e Lemna minor.

Bibliografia

Tabella 1 - Analisi chimico-fisiche delle acque del fontanile Albarella

<table>
<thead>
<tr>
<th>Parametri</th>
<th>Dicembre '84</th>
<th>Maggio '85</th>
<th>Marzo '86</th>
<th>Ottobre '86</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH₂O</td>
<td>13.2</td>
<td>11.1</td>
<td>10.0</td>
<td>10.4</td>
</tr>
<tr>
<td>pH</td>
<td>6.6</td>
<td>7.1</td>
<td>6.3</td>
<td>7.2</td>
</tr>
<tr>
<td>µS/cm</td>
<td>366.0</td>
<td>435.0</td>
<td>322.0</td>
<td>335.0</td>
</tr>
<tr>
<td>°F</td>
<td>16.0</td>
<td>21.0</td>
<td>15.0</td>
<td>16.0</td>
</tr>
<tr>
<td>O₂ mg/l</td>
<td>5.1</td>
<td>7.2</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>O₂ %</td>
<td>55.0</td>
<td>76.0</td>
<td>55.0</td>
<td>78.0</td>
</tr>
</tbody>
</table>

Tabella 2 - Evoluzione della struttura della comunità macrobentonica

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dytiscidae</td>
<td>Cordulesasteridae</td>
<td>Dytiscidae</td>
<td>Bactidae</td>
<td>Bactidae</td>
</tr>
<tr>
<td>Asellidae</td>
<td>Ptychonotidae</td>
<td>Asellidae</td>
<td>Platychemidae</td>
<td>Platychemidae</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>Chironomidae</td>
<td>Chironomidae</td>
<td>Chironomidae</td>
<td>Chironomidae</td>
</tr>
<tr>
<td>Tubificidae</td>
<td>Tubificidae</td>
<td>Tubificidae</td>
<td>Tubificidae</td>
<td>Tubificidae</td>
</tr>
<tr>
<td>Lumbriculidae</td>
<td>Lumbriculidae</td>
<td>Lumbriculidae</td>
<td>Lumbriculidae</td>
<td>Lumbriculidae</td>
</tr>
</tbody>
</table>

Tabella 3 - Variazioni unità sistematiche nel fontanile

![Bar chart showing variations of systematic units in the spring](image-url)