LINEE GUIDA PER LA VERIFICA ED IL COLLAUDO DELLE BARRIERE IMPERMEABILI PER LA MESSA IN SICUREZZA DI SITI CONTAMINATI
Presidente: On. Ombretta Colli
Assessore all’Ambiente: Luigi Cocchiaro
A cura della: Direzione centrale ambiente
Direttore Centrale: Vincenzo Imparato
Coordinamento: Luca Raffaelli
Supporto tecnico e redazionale: Bruno Ronchetti, Andrea Zelioli

Università degli Studi di Milano
Dipartimento di Scienze della Terra ‘A. Desio’

Giovanni Pietro Beretta, Marco Bianchi, Roberta Pellegrini

 Questa pubblicazione è frutto della convenzione in atto tra la Provincia di Milano e l’Università degli Studi di Milano

© 2003 by Provincia di Milano
LINEE GUIDA PER LA VERIFICA ED IL COLLAUDO DELLE BARRIERE IMPERMEABILI PER LA MESSA IN SICUREZZA DI SITI CONTAMINATI

INDICE

1 PREMESSA..3

2 SISTEMI DI COPERTURA SUPERFICIALE ..6
 2.1 GENERALITÀ E PRINCIPALI TIPOLOGIE COSTRUTTIVE ..6
 2.2 VERIFICA DEGLI ASSUNTI PROGETTUALI ..10
 2.2.1 Inquadramento dell’area ...11
 2.2.2 Caratterizzazione geologico – tecnica ...11
 2.2.3 Aspetti idrogeologici ...12
 2.2.4 Stato di contaminazione ..13
 2.2.5 Elementi critici in fase di progettazione ..15
 2.3 CONTROLLI IN FASE DI SCELTA E QUALIFICAZIONE DEL MATERIALE ...16
 2.3.1 Materiali per lo strato di regolarizzazione ...17
 2.3.2 Geomembrane ..17
 2.3.3 Strato minerale a bassa permeabilità ...20
 2.3.4 Geocompositi bentonitici ..20
 2.3.5 Geotessili ..22
 2.3.6 Strato drenante ..23
 2.3.7 Terreno per lo strato di protezione e superficiale ..24
 2.4 CONTROLLI IN CORSO D’OPERA SUI SINGOLI MATERIALI, SUL CONFEZIONAMENTO E SULLA POSA25
 2.4.1 Strato di regolarizzazione ..25
 2.4.2 Geomembrane ..26
 2.4.3 Strato minerale a bassa permeabilità ...29
 2.4.4 Geocompositi bentonitici ..31
 2.4.5 Geotessili di protezione ..33
 2.4.6 Strato drenante ..33
 2.5 CONTROLLI AD OPERE ULTIME ..35
 2.5.1 Valutazione dell’integrità di geomembrane con metodi geoelettrici ..35
 2.5.2 Metodi invasivi: lisimetri e campionatori BAT ..37
 2.6 INTERVENTI DI MANUTENZIONE ORDINARIA, STRAORDINARIA E PIANI DI EMERGENZA39

3 BARRIERE FISICHE VERTICALI..40
 3.1 GENERALITÀ E PRINCIPALI TIPOLOGIE COSTRUTTIVE ..40
 3.1.1 Diaframmi plastici ...42
 3.1.2 Diaframmi sottili e palancole metalliche ...44
 3.1.3 Miglioramento dei terreni ..44
 3.1.4 Caratteristiche prestazionali delle barriere verticali ...47
 3.2 VERIFICA DEGLI ASSUNTI PROGETTUALI ..47
 3.2.1 Caratterizzazione geologico – tecnica ...48
 3.2.2 Caratterizzazione idrogeologica del sito ...48
 3.2.3 Stato di contaminazione ..49
 3.2.4 Caratteristiche tecniche della barriera verticale ...49
 3.3 CONTROLLI IN FASE DI SCELTA E QUALIFICAZIONE DEL MATERIALE ...53
 3.3.1 Materiali di base della miscela ..55
 3.3.2 Miscela plastica ..55
 3.3.3 Geomembrane in HDPE ..58
3.4 CONTROLLI IN CORSO D’OPERA SUI SINGOLI MATERIALI, SUL CONFEZIONAMENTO E SULLA POSA …… 59
3.4.1 Controlli sui materiali di base della miscela ... 60
3.4.2 Controlli sulla miscela .. 61
3.4.3 Geomembrane .. 62
3.4.4 Controlli sulla geometria del diaframma ……………………………………………………… 64
3.5 CONTROLLI AD OPERE ULTIMATE ………………………………………………………………………… 65
3.5.1 Test di stress idraulico ... 67
3.5.2 Metodi geofisici .. 67
3.5.3 Prove di infiltrazione ………………………………………………………………………………… 69
3.5.4 Prove con piezocono ………………………………………………………………………………… 70
3.5.5 Prove di permeabilità su campioni ……………………………………………………………… 71
3.5.6 Prove di tenuta di un palancolato metallico ………………………………………………… 72
3.6 CONTROLLI A MEDIO E A LUNGO TERMINE ………………………………………………………………………… 73
3.7 INTERVENTI DI MANUTENZIONE ORDINARIA, STRAORDINARIA E PIANI DI EMERGENZA ……….. 74

BIBLIOGRAFIA …… 75

APPENDICE 1 – CARATTERISTICHE DEI SISTEMI DI IMPERMEABILIZZAZIONE DELLE DISCARICHE DI RIFIUTI SECONDO LA NORMATIVA VIGENTE IN ITALIA ………...
1 PREMESSA

Tra le tecnologie comunemente adottate in presenza di terreni contaminati, le barriere impermeabili rappresentano una soluzione tecnica applicata dove emerge la necessità di isolare e contenere, in modo definitivo o temporaneo, la propagazione dei composti inquinanti.

In riferimento al quadro normativo vigente in materia di bonifica di siti contaminati (D.M. 471/99), questi sistemi di confinamento possono essere impiegati sia come misure di messa in sicurezza di emergenza (opere temporanee per contenere la diffusione dei contaminanti in attesa di successivi interventi di bonifica), sia in un contesto di bonifica con misure di sicurezza e di messa in sicurezza permanente, ovvero in quelle situazioni in cui, pur applicando le migliori tecnologie disponibili a costi sostenibili, non è possibile raggiungere le concentrazioni limite ammissibili, previste dal D.M. 471/99. Non vengono invece impiegati per la bonifica ed il ripristino ambientale in quanto non favoriscono la riduzione delle concentrazioni, della massa e del volume di sostanze inquinanti.

La loro applicazione è comunque subordinata ad un’analisi di rischio che deve essere svolta secondo le direttive dell’Allegato 4 del suddetto decreto ministeriale.

Le barriere fisiche si possono sostanzialmente classificare in superficiali (coperture), laterali (verticali) e di fondo. Tali opere possono essere abbinate ad altri sistemi quali barriere idrauliche finalizzate all’intercettazione ed allo smaltimento di acque superficiali e sotterranee (in tal caso vengono definite “attive”) oltre che accoppiate ad interventi accessori e funzionali quali reti di monitoraggio interne ed esterne, sistemi di controllo idraulico interni (pazze di aggottamento) ed eventuali opere di protezione delle barriere stesse, come ad esempio sistemi di difesa dall’erosione delle coperture superficiali.

La scelta e lo sviluppo progettuale dei sistemi di impermeabilizzazione, in particolare per quelli a carattere permanente, parte dall’esame delle tecniche disponibili e dei materiali impiegabili in relazione al grado di isolamento richiesto, senza tuttavia prescindere da un’attenta valutazione delle caratteristiche geologiche e geotecniche del sito oltre che della tipologia, grado ed estensione della contaminazione. Tali informazioni devono essere il risultato delle indagini effettuate durante la fase di caratterizzazione.
Linee guida per la verifica ed il collaudo delle barriere impermeabili per la messa in sicurezza di siti contaminati

Lo sviluppo tecnologico e l’efficienza delle coperture superficiali e delle barriere verticali, grazie all’esperienza maturata nel campo delle discariche controllate, possono essere ritenute sufficientemente collaudate, mentre le barriere fisiche di fondo rappresentano a tutt’oggi una tecnica sperimentale a causa delle notevoli difficoltà progettuali e delle rare applicazioni a casi di studio reali in campo ambientale.

In ogni caso è fondamentale che queste opere siano sottoposte ad accurate procedure di Garanzia\(^1\) e di Controllo\(^2\) di Qualità finalizzate a certificare, con adeguato grado di affidabilità, che le prestazioni siano rispondenti a quelle previste e/o richieste.

Dal momento che la verifica della rispondenza delle barriere agli standard progettuali non può generalmente avere luogo a posteriori, a causa dell’irripetibilità di alcune operazioni di controllo (come ad esempio misura dell’isolamento del fondo di una barriera superficiale), è importante che la procedura di certificazione venga eseguita contemporaneamente alle fasi progettuali e costruttive, in modo da apportare eventuali interventi correttivi senza dovere attendere l’ultimazione delle opere. In questa prospettiva, la valutazione non deve basarsi unicamente su una verifica di efficienza globale post – operam, ma anche su controlli di qualità sia in fase di scelta e qualificazione dei materiali impiegati, sia in fase di costruzione.

A questo scopo verranno di seguito presentate alcune indicazioni e criteri utili alla verifica e al collaudo delle barriere impermeabili (barriere fisiche superficiali e verticali) al fine di garantirne l’affidabilità dal punto di vista prestazionale. Non vengono invece considerate le barriere di fondo, di largo utilizzo nel campo delle discariche controllate, ma raramente utilizzate per interventi di messa in sicurezza di siti contaminati.

Lo schema operativo proposto prevede le seguenti fasi:

a) revisione dei dati (verifica degli assunti progettuali);

b) controlli in fase di scelta e qualificazione dei materiali;

c) controlli in corso d’opera sui singoli materiali, sul confezionamento e sulla posa;

d) controlli ad opere ultimate (prove in sito);

e) controlli post – operam (monitoraggio, verifiche globali e ripristini);

1 Per Garanzia di Qualità (GQ) si intende l’insieme delle azioni sistematiche e pianificate atte a fornire la garanzia che un impianto e le sue parti diano le prestazioni richieste, nelle varie condizioni di regime previste.

2 Per Controllo di Qualità (CQ) si intende quella parte di attività della garanzia di qualità che permette di rilevare e misurare le caratteristiche di una porzione di un impianto, di un procedimento o di un servizio, verificando tali caratteristiche a fronte di parametri preventivamente specificati.
Per ogni fase verrà specificato il materiale da acquisire per la valutazione e le prove e/o analisi sperimentali da effettuare. I controlli per le coperture superficiali e per i sistemi di confinamento verticale verranno esaminati separatamente in quanto la tipologia di queste opere è sostanzialmente diversa. Per quanto riguarda i controlli relativi alle barriere verticali verranno trattati più estesamente quelli relativi ai diaframmi compositi cemento – bentonitici, che rappresentano l’applicazione più comunemente adottata in campo ambientale.

Le caratteristiche dei sistemi di impermeabilizzazione di una discarica sono riassunte a titolo esemplificativo in Appendice 1, sulla base della normativa attualmente in vigore a livello nazionale (D.Lgs. 13 gennaio 2003, n.36).

Si ringrazia l’ing. Stefano Veggi dello Studio Geotecnico Italiano per la collaborazione prestata nella stesura di diverse parti delle presenti Linee Guida nonché l’ing. Daniele Cazzuffi e l’ing. Enrico Crippa del CESI S.p.a. per la preziosa opera di revisione.
2 SISTEMI DI COPERTURA SUPERFICIALE

2.1 Generalità e principali tipologie costruttive

Le barriere fisiche superficiali hanno la duplice funzione di:

- impedire l’infiltrazione delle acque meteoriche attraverso il suolo contaminato in modo tale da evitare la diffusione in profondità degli inquinanti, in particolare verso le acque sotterranee;
- inibire il contatto diretto con il suolo contaminato e limitare, se non abbattere, eventuali emissioni gassose.

Le prime applicazioni in campo ambientale, risalenti agli anni ‘80, prevedevano l’isolamento del terreno contaminato attraverso uno o due strati di terreno argilloso compattato, rivestiti di terreno vegetale. L’esperienza maturata nell’applicazione di sistemi di copertura alle discariche controllate, ha favorito una notevole evoluzione tecnologica, soprattutto in termini di materiali impiegati. A partire da questo schema, soggetto a inconvenienti quali essiccamento e fessurazioni legate a cedimenti differenziali, si è giunti all’adozione di sistemi multistrato compositi costruiti con materiali naturali (terreno vegetale, ghiaia, sabbia, argilla,) ed artificiali (geosintetici).

Nel caso generale, una copertura superficiale multistrato è costituita essenzialmente dai seguenti componenti di base (Figura 2):

1) **strato di regolarizzazione**: è lo strato a contatto con il terreno contaminato ed ha lo scopo di favorire la messa in opera degli strati immediatamente superiori.

![Diagramma della copertura superficiale multistrato](image)

Figura 2 – Elementi costitutivi di una copertura superficiale multistrato
2) **strato drenante dei gas**: di spessore pari a circa 0.30 m, può essere realizzato in materiale naturale (sabbia o ghiaia) o con un geosintetico di adeguate caratteristiche di trasmissività. Quando lo strato di impermeabilizzazione è in argilla compattata, è in ogni caso consigliato l’inserimento tra lo strato drenante e la barriera impermeabile di un geosintetico di adeguata resistenza a trazione, con funzione di separatore tra lo strato drenante e la barriera impermeabile;

3) **strato impermeabile**: può essere realizzato con uno strato di argilla compattata (spessore > 0.5 m) eventualmente accoppiata superiormente ad una geomembrana o ad un geocomposito bentonitico; una barriera composita (argilla + geomembrana/geocomposito) ha il vantaggio di ridurre la permeabilità e di compensare eventuali difetti quali rotture della geomembrana o fessurazioni dello strato di argilla. Le geomembrane possono essere sintetiche, omogenee o rinforzate, di tipo plastomerico o elastomerico (polietilene a bassa densità LDPE, polietilene ad alta densità HDPE, polivinilcloruro PVC, polipropilene PP), oppure bituminose (fogli con spessore compreso tra 3.0 e 6.0 mm, caratterizzati da una conducibilità idraulica molto bassa).

 Con il termine di geocompositi bentonitici (GCL – Geosynthetic Clay Liners) sono definiti dei prodotti costituiti da un sottile strato di argilla (bentonite sodica) racchiuso tra 2 geotessili o incollato ad una geomembrana sintetica.

4) **strato di protezione**: protegge lo strato impermeabile; a tal fine può essere utilizzato un geotessile di adeguato spessore e resistenza.

5) **strato drenante**: assolve le funzioni di ridurre il carico d’acqua sullo strato impermeabilizzante, di drenare lo strato protettivo aumentando la capacità di immagazzinamento d’acqua e di ridurre la pressione interstiziale nella copertura migliorandone la stabilità. Può essere realizzato con materiali naturali (ghiaia e sabbia) o artificiali (georeti e geocompositi drenanti). Lo spessore deve essere superiore a 0.5 m.

6) **strato superficiale**: deve essere costituito da materiale di caratteristiche compatibili con la destinazione d’uso finale (vegetale o di altro tipo) e spessore superiore a 1 m.

L’elenco dei materiali utilizzabili per la realizzazione dei vari componenti di un sistema di impermeabilizzazione è riportato in Tabella 1; alcuni elementi possono essere costituiti da due o più tipologie di materiale accoppiate (ad esempio, strati impermeabili compositi). Tutti i sistemi di copertura richiedono uno strato di rifinitura superficiale e di impermeabilizzazione, ma in alcune situazioni gli altri strati possono essere opzionali.

Le tipologie costruttive si differenziano sulla base del materiale da isolare (terreno contaminato, discarica, ecc.), della durata dell’intervento (temporaneo o definitivo) e della destinazione d’uso del suolo (aree verdi, transitabili o edificabili).
Per quanto riguarda interventi a carattere temporaneo, lo schema più semplice, ma anche meno affidabile dal punto di vista della sicurezza ambientale, è la **copertura con terreno superficiale**.

È costituita da uno o due strati di terreno, ricavato da materiale presente in sito, opportunamente livellati e compatti su cui viene posto uno strato superficiale di terreno vegetale.

Il grado di impermeabilizzazione è funzione del grado di compattazione, anche se va prestata attenzione al fatto che questo tipo di copertura, a meno di periodici interventi di manutenzione, è soggetta ad una rapida degradazione da parte di agenti erosivi (acque meteoriche, gelo, vento, etc.) che comporta la creazione di fessurazioni e discontinuità che ne inficiano l’efficienza.

In altre situazioni temporanee, l’impermeabilizzazione è garantita dalla stesura di una geomembrana. Le **coperture temporanee non transitabili** sono costituite da un eventuale strato di regolarizzazione su cui vengono stesi i teli, generalmente in LDPE, PVC o PP e di spessore compreso tra 0.3 e 1 mm, posati sovrapposti con eventuale cordone sigillante ed ancorati con adeguati sistemi di fissaggio e appesantimento.

Per la realizzazione di **coperture temporanee transitabili**, i teli della geomembrana, in HDPE, LDPE, PVC o PP, vengono stesi su uno strato di regolarizzazione e ricoperti con uno strato di protezione, di spessore adeguato per permettere la transitabilità, costituito da terreno e da uno strato di geotessile a contatto con la geomembrana.

Le tipologie costruttive delle coperture permanenti sono distinte in relazione alla destinazione d’uso della copertura stessa. Per le zone non interessate dalla presenza di carichi, come ad esempio per aree verdi, si può costruire un tipo di copertura (**copertura superficiale impermeabilizzante**) che prevede uno strato di regolarizzazione, una barriera impermeabile costituita da un geocomposito bentonitico (spessore di circa 1 cm) o da uno strato di argilla compattata, eventualmente accoppiata ad una geomembrana, e uno strato di terreno vegetale.

Lo strato superficiale, di spessore pari a circa 40 cm, deve avere una pendenza del 3 – 5 ‰ in modo tale da garantire il deflusso delle acque superficiali. In casi specifici può essere necessario adottare uno strato drenante per il gas e/o per le acque secondo lo schema multistrato descritto precedentemente.

Per aree transitabili come strade e parcheggi, si può ricorrere a **impermeabilizzazioni tramite asfaltatura** quando il sito è caratterizzato da una contaminazione da elementi chimici poco mobili e in basse concentrazioni. Generalmente è utilizzato cemento asfaltico che viene preferito al cemento Portland per i costi ridotti, per un maggiore controllo delle fessurazioni e per operazioni di posa più semplici.

Questo tipo di copertura presenta svantaggi quali l’impossibilità di stabilire a priori la durata dell’efficienza della barriera e l’esigenza di una manutenzione periodica, anche in seguito ad azioni di deterioramento meccanico e chimico.
Per quanto riguarda la realizzazione dell’asfaltatura, si provvede ad una regolarizzazione e compattazione del fondo su cui vengono stesi un manto di collegamento in conglomerato bituminoso (binder) dello spessore orientativo di 7 cm e un manto di usura dello spessore di circa 3 cm.

Tabella 1: Materiali per la realizzazione di un sistema di copertura superficiale.

<table>
<thead>
<tr>
<th>Strato</th>
<th>Materiale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficiale</td>
<td>Terreno vegetale</td>
</tr>
<tr>
<td></td>
<td>Geosintetici per il controllo dell’erosione.</td>
</tr>
<tr>
<td></td>
<td>Ciottoli</td>
</tr>
<tr>
<td></td>
<td>Materiale da pavimentazione</td>
</tr>
<tr>
<td>Drenaggio</td>
<td>Sabbia o ghiaia</td>
</tr>
<tr>
<td></td>
<td>Georeti o geocompositi drenanti</td>
</tr>
<tr>
<td></td>
<td>Rifiuti riciclati (tire chips)</td>
</tr>
<tr>
<td>Protezione</td>
<td>Terreno</td>
</tr>
<tr>
<td></td>
<td>Ghiaia</td>
</tr>
<tr>
<td></td>
<td>Geotessile</td>
</tr>
<tr>
<td></td>
<td>Rifiuti riciclati (fly ash)</td>
</tr>
<tr>
<td>Barriera</td>
<td>Argilla compattata</td>
</tr>
<tr>
<td></td>
<td>Geomembrane</td>
</tr>
<tr>
<td></td>
<td>GCL</td>
</tr>
<tr>
<td></td>
<td>Asfalto</td>
</tr>
<tr>
<td>Drenaggio gas</td>
<td>Sabbia o ghiaia</td>
</tr>
<tr>
<td></td>
<td>Georeti o geocompositi drenanti</td>
</tr>
<tr>
<td></td>
<td>Geotessili</td>
</tr>
<tr>
<td></td>
<td>Rifiuti riciclati (tire chips)</td>
</tr>
<tr>
<td>Regolarizzazione</td>
<td>Sabbia e ghiaia</td>
</tr>
<tr>
<td></td>
<td>Georeti</td>
</tr>
<tr>
<td></td>
<td>Geotessili</td>
</tr>
</tbody>
</table>

In situazioni in cui, oltre alla transitabilità, deve essere garantita una maggiore protezione ambientale per far fronte a contaminazioni in concentrazioni elevate, si ricorre a coperture multistrato. Le sollecitazioni derivanti dalla circolazione di automezzi, che potrebbero danneggiare il sistema copertura, vengono gestite sostituendo lo strato di regolarizzazione con uno strato avente funzione di sottotopografia stradale realizzato da materiale granulare rinforzato con una geogriglia o ungeotessile.

Figura 3 – Sistema di copertura di un sito contaminato con futuro utilizzo a parcheggio
La barriera impermeabile può essere costituita da una geomembrana (HDPE o LDPE) eventualmente accoppiata ad un geocomposito bentonitico, prevedendo uno strato di protezione ed un sistema di drenaggio costituito da materiale granulare con tubazioni fessurate e pozzetti di evacuazione.

Superiormente deve essere posato un geotessile con funzione di separatore, mentre lo strato superficiale, che deve assolvere la funzione di sottofondo stradale e di pavimentazione, deve essere dimensionato in relazione al traffico veicolare previsto.

Se l’area in cui è stata realizzata la copertura è destinata ad edificazioni, emerge una serie di complessità tecniche legate all’interferenza tra il sistema di copertura (in particolare del suo strato di impermeabilizzazione) e le fondazioni che, dove possibile, devono essere superficiali.

Senza entrare nel merito degli accorgimenti tecnici necessari per far fronte a questa problematica, per la cui descrizione si rimanda ad articoli di carattere specialistico, è sufficiente sottolineare come questo tipo di interventi debba essere programmato fin dalle prime fasi progettuali.

La quasi totalità delle coperture superficiali descritte precedentemente, sia temporanee che definitive, può essere accoppiata a tecnologie di bonifica quali barriere reattive, pump&treat, soil venting, air sparging e a sistemi di decontaminazione del terreno in sito (biodegradatazione).

I sistemi di confinamento superficiale si sono dimostrati efficaci nel contenimento di numerose tipologie di contaminati tra cui idrocarburi, composti volatili (VOC) e semivolatili (SVOC), metalli e materiali radioattivi.

2.2 Verifica degli assunti progettuali

Nella valutazione prestazionale di un sistema di copertura superficiale, è importante partire da una verifica dei dati utilizzati per la caratterizzazione del sito. La caratterizzazione dovrebbe infatti giustificare le scelte operate in sede progettuale, in riferimento alla posizione, tipologia e dimensionamento della barriera oltre che ai materiali impiegati e alle loro proprietà tecniche.

Questa fase ha quindi lo scopo di valutare se nel progetto della barriera superficiale sono state considerate le caratteristiche geologiche, idrogeologiche e geotecniche del sito nonché il grado e l’estensione della contaminazione e le caratteristiche dei contaminanti, facendo particolare attenzione ai fattori che possono influire negativamente sulle sue caratteristiche di isolamento e di tenuta.

Gli elementi principali che vanno attentamente valutati sono:

a) inquadramento dell’area;
b) caratterizzazione geologico – tecnica;
c) aspetti idrogeologici;
d) stato di contaminazione.
2.2.1 Inquadramento dell’area

Il progetto deve descrivere in modo adeguato la posizione e la logistica del sito in cui verrà realizzata la copertura.

A questo scopo dovranno essere forniti elaborati cartografici che permettono la localizzazione del sito (scala 1:10000 ÷ 1:25000) e la descrizione dello stato di fatto dell’area (scala 1:1000 ÷ 1:500), riportando inoltre la posizione di eventuali infrastrutture superficiali e sotterranee (edifici, impianti, sistemi di monitoraggio, pozzi, ecc).

La documentazione topografica generale può basarsi sulla cartografia aggiornata (C.T.R. ad esempio), ma per le scale a maggiore dettaglio deve essere eseguito un rilievo topografico specifico.

L’inquadramento geografico dell’area dovrebbe essere integrato da un inquadramento meteoclimatico utile per valutare alcune caratteristiche progettuali del sistema di copertura (il dimensionamento dei sistemi di drenaggio, ad esempio), e per stimare l’incidenza di fattori dannosi per la sua efficienza quali l’erosione superficiale o l’infiltrazione.

I dati meteoclimatici, riferiti a stazioni prossime all’area, possono essere reperiti presso enti ufficiali (Servizio Idrografico e Mareografico dello Stato, Regione, E.R.S.A.L., ecc.) e devono coprire un arco temporale non inferiore a 10 anni.

La caratterizzazione delle precipitazioni deve comprendere i valori medi mensili ed annui, il numero di giorni di pioggia, i valori di massima intensità registrati ai pluviografi, i valori di massima intensità per periodi di più giorni consecutivi ed infine i valori di precipitazioni di notevole intensità e breve durata. Questi ultimi dovrebbero essere elaborati con metodi statistici (ad esempio il metodo di Gumbel) al fine di stimare le curve di possibilità pluviometrica per tempi di ritorno almeno pari a 30 anni.

I sistemi di drenaggio devono essere dimensionati sulla base dei risultati delle elaborazioni dei dati pluviometrici e termometrici.

2.2.2 Caratterizzazione geologico – tecnica

Lo studio geologico a supporto della progettazione deve ricostruire la natura, l’assetto e le caratteristiche geotecniche dei terreni che interagiscono con la copertura.

A questo scopo, le informazioni desunte dalla letteratura, valide per un inquadramento geologico generale, devono essere integrate mediante indagini dirette (sondaggi) e indirette (metodi geofisici e prove penetrometriche).

Il numero e la profondità dei sondaggi devono essere definiti in relazione alla situazione geologica del sito; le stratigrafie dei singoli sondaggi, eventualmente correlate lungo sezioni opportunamente orientate, devono essere riportate nel progetto unitamente ad una carta di ubicazione.
I metodi di indagine indiretta devono essere scelti in base alla situazione geologica e allo specifico campo di applicabilità della prova. In ogni caso, le prospezioni indirette devono essere tarate con prospezioni dirette.

In aree caratterizzate da una dinamica geomorfologica particolarmente attiva, devono essere forniti elementi utili per valutare le condizioni di stabilità verificando l’incidenza di fattori quali la gravità (aree franose) e le acque superficiali (aree alluvionabili). Riguardo a quest’ultimo elemento potrebbe essere richiesto uno studio idrologico allo scopo di individuare il reticolo idrografico naturale ed antropico, valutare il regime delle acque di ruscellamento superficiale e l’estensione delle eventuali aree esondabili.

Infine devono essere investigate le proprietà geotecniche dei terreni contaminati su cui verrà realizzata la copertura, attraverso l’esecuzione di prove in situ e di laboratorio su campioni rappresentativi.

Le prove devono essere finalizzate alla verifica della stabilità dell’insieme opera – terreno; la scelta della tipologia, del numero e dell’estensione delle indagini deve essere fatta in funzione delle dimensioni dell’opera, delle caratteristiche dei terreni, e delle specifiche condizioni ambientali.

2.2.3 Aspetti idrogeologici

La fattibilità di un intervento di copertura superficiale non può prescindere da una valutazione della profondità della tavola d’acqua e della sua escursione stagionale, in quanto nei casi in cui sussiste interferenza tra la tavola d’acqua e il terreno contaminato il confinamento deve essere realizzato con sistemi diversi dalle barriere superficiali (barriere idrauliche, barriere verticali).

Queste informazioni (soggiacenza, escursioni stagionali, ecc.) devono essere specificate dal progetto fornendo valori misurati in pozzi e piezometri prossimi all’area dove l’intervento verrà realizzato. Se è prevista l’installazione di una rete di monitoraggio delle acque sotterranee, è importante che venga ricostruito l’assetto idrogeologico del sottosuolo, individuando la direzione di flusso idrico e i rapporti tra le falde, al fine di posizionare correttamente i punti di monitoraggio ed i relativi intervalli fessurati.

Per quanto riguarda la parametrizzazione idrogeologica, deve essere valutata la conducibilità idraulica del terreno da isolare facendo ricorso a:

- prove di laboratorio su campioni rappresentativi:
 - prove dirette (permeametri a carico variabile o costante);
 - prove indirette (prove edometriche)
• prove in sito:
 o infiltrometro (infiltrometro ad anello singolo o doppio);
 o permeametro (permeametro Boutwell);
 o prove in foro (Lefranc)

2.2.4 Stato di contaminazione

Il dimensionamento e la tipologia della barriera superficiale, nonché la scelta dei materiali impiegati, deve risultare dalla caratterizzazione della contaminazione, in particolare per quanto riguarda concentrazione, estensione areale e caratteristiche chimiche.

È necessario verificare che i risultati delle analisi chimiche siano conformi ai requisiti di legge, ovvero che esse siano state effettuate in laboratori certificati ed opportunamente validate dall’Ente competente.

Per la valutazione dell’estensione areale della contaminazione devono essere seguite procedure di campionamento adeguate, adottando cautele al fine di evitare la diffusione di contaminanti secondo le direttive del D.M. 471/99 – Allegato 2.

La frequenza di campionamento sui terreni deve essere funzione delle dimensioni del sito da investigare:

- < 10000 m²: almeno 5 punti;
- 10000 ÷ 50000 m²: da 5 a 15 punti;
- 50000 ÷ 250000 m²: da 15 a 60 punti;
- 250000 ÷ 500000 m²: da 60 a 120 punti;
- > 500000 m²: almeno 2 punti ogni 10000 m².

In tutte le situazioni in cui si sospetta la presenza di composti volatili o semivolatili nel sottosuolo è necessaria una campagna di rilevamento del gas interstiziale; se prove ed analisi non ne escludono la presenza, il sistema di copertura di superficiale deve sempre prevedere uno strato drenante dei gas.

2.2.4.1 Tecniche di campionamento dei terreni

Le tecniche di campionamento per la matrice sottosuolo, utilizzate per la caratterizzazione della contaminazione, non si differenziano di molto da quelle in uso per il campionamento geotecnico, tuttavia, le precauzioni da utilizzare per garantire
la rappresentatività del campione sono diverse essendo differenti gli scopi finali delle indagini.

L’obiettivo primario dell’operazione di campionamento del terreno, nell’ambito della caratterizzazione della contaminazione, consiste nel prelievo di un campione che sia il più rappresentativo possibile delle caratteristiche chimiche, fisiche e biologiche degli orizzonti attraversati ed indicatore dell’eventuale presenza di sostanze inquinanti. Un corretto approccio al problema non deve prendere in considerazione solamente l’operazione di recupero del campione, ma anche quella di perforazione essendo indispensabile intervenire con tecniche che minimizzino l’alterazione del campione da recuperare. L’allegato 2 al D.M. 471/99 impone che il carotaggio venga eseguito con “metodi di penetrazione a secco senza fluido di perforazione, usando un carotiere di diametro idoneo a prelevare campioni indisturbati ed evitando fenomeni di surriscaldamento”.

I metodi di penetrazione a secco utilizzati nel campionamento ambientale sono la perforazione con avanzamento a rotazione in assenza di fluidi di perforazione e le tecniche penetrometriche o direct-push.

La perforazione a rotazione viene condotta facendo avanzare un utensile (carotiere o distruttore di nucleo) per mezzo di una batteria di aste, alla quale viene applicata una spinta assiale ed una coppia di rotazione. Nelle applicazioni normali essa comporta l’impiego di un fluido di perforazione che facilita la rimozione dei detriti durante l’avanzamento del tagliente, sostiene le pareti del foro, raffredda e lubrifica la punta.

Poiché il fluido di perforazione penetrando all’interno del campione ne altera le proprietà chimico –fisiche, nelle indagini ambientali si deve preferire la perforazione in assenza di fluidi di perforazione, detta a secco che è possibile solo nel caso in cui si proceda nella modalità a carotaggio continuo, prevedendo l’utilizzo di un carotiere al posto dello scalpello distruttore di nucleo.

Durante la fase di perforazione a carotaggio continuo è possibile recuperare un campione disturbato e di bassa qualità, oppure ricorrere all’utilizzo di campionatori specifici. L’avanzamento a rotazione permette l’utilizzo di tre sistemi differenti per il recupero di campioni “indisturbati”: i campionatori a rotazione (Denison e Mazier), i campionatori a pressione (Shelby, Osterberg) ed i campionatori a percussione.

I sistemi direct push (Geoprobe, Enviprobe, ecc) utilizzano strumentazioni a percussione con avanzamento a secco, che permettono il campionamento anche dei gas interstiziali nel mezzo non sature e delle acque nel mezzo sature. Il principio di funzionamento è simile a quello dei penetrometri utilizzati in campo geotecnico: un martello spinge alla profondità voluta una serie di aste, al termine delle quali è presente un campionatore adeguato alla matrice da prelevare.

Le carote, di diametro inferiore a 2”, vengono restituite all’interno di fustelle in materiali plastici trasparenti, che consentono l’ispezione visiva del campione. Il contatto con l’atmosfera e con agenti esterni viene minimizzata grazie alla chiusura della fustella mediante appositi tappi.

I sistemi direct-push, adatti per profondità piccole e medie, presentano vantaggi quali la velocità e la qualità di campionamento ed i costi limitati.
Al fine di conservare la rappresentatività dei campioni anche per quanto riguarda la componente volatile, si raccomanda l’utilizzo di metodi specifici come ad esempio il metodo ASTM D4547-91.

2.2.4.2 Tecniche di campionamento dei gas interstiziali

Per il campionamento del gas interstiziale possono essere utilizzate tecniche attive e passive (ASTM D4547-91).

In ogni caso si sottolinea che la loro capacità di rilevare la presenza di contaminanti è limitata dalle caratteristiche fisiche e chimiche dei composti stessi.

In particolare, giocano un ruolo importante, la tensione di vapore e la costante di Henry, indicatori della facilità con cui il composto si ripartisce in fase gassosa.

Il campionamento di tipo attivo è efficace se la tensione di vapore del contaminante è superiore a 0.5 mmHg e nel caso in cui il composto sia presente nell’acqua interstiziale o disciolto nell’acqua di falda, la costante di Henry deve essere superiore a 0.1.

Il campionamento attivo viene condotto mediante l’introduzione di punte o di sistemi di monitoraggio permanenti (analoghi ai piezometri) all’interno del mezzo non saturo e la successiva estrazione dei gas interstiziali con l’ausilio di pompe a vuoto, elettriche o manuali.

Le punte per il prelievo dei gas possono essere infisse nel terreno manualmente o per mezzo di sistemi a percussione direct-push (es. Geoprobe, Enviprobe).

A differenza dei metodi di campionamento attivo, il campionamento passivo è basato sul flusso naturale del contaminante nel suolo verso un sistema di campionamento costituito da un materiale adsorbente (generalmente carbone attivo).

Il materiale adsorbente viene alloggiato all’interno di contenitori solitamente in vetro, che vengono disposti aperti e a testa in giù all’interno di pori praticati nel terreno. Questi, riempiti successivamente con terreno di riporto, non raggiungono generalmente profondità superiori al paio di metri. I campionatori passivi vengono rimossi dopo un periodo sufficientemente lungo, generalmente variabile tra due e trenta giorni, e portatati direttamente nei laboratori di analisi.

2.2.5 Elementi critici in fase di progettazione

Vengono di seguito presentati alcuni elementi che devono essere attentamente valutati durante la fase di verifica dei progetti, in quanto determinanti per l’efficacia di un sistema di copertura superficiale.

- **Dimensioni**: la copertura, nella sua configurazione tipo (ovvero a pieno spessore e con tutte le componenti), deve avere un’estensione tale da ricoprire
completely the contaminated area, possibly with a safety margin of several meters.

- **Integrità strutturale**: the coating must have requirements for static and dynamic resistance so as not to be subject to sediments once in regime under the conditions of use foreseen.

- **Strato superficiale**: must be adequate to the destination use of the coating (green areas, roads, buildable areas, etc.) and must be realized with a material (vegetation soil, asphalt, etc.) adequate in terms of durability and resistance to meteoric agents. The superficial protection layer should be designed with a sufficient slope to favor the drainage of meteoric waters.

- **Strato di protezione**: the thickness and material with which it is constituted must be adequate to the functions of protection of the impermeable barrier from damages due to cycles of freezing/thawing, roots, etc. and from the loads imposed on the surface according to the destination use foreseen.

- **Strato drenante**: the drainage layer has the purpose of removing water infiltrated through the superficial layer and preventing its accumulation on the surface of the impermeable state.

For its design, the following technical specifications are suggested:

- slope: > 1 %;
- hydraulic conductivity: > 1 \(\cdot 10^{-4} \) m/s (for natural drainage layers);
- transmissivity: > 3 \(10^{-5} \) m\(^2\)/s (for geosynthetic drainage layers);

The drainage layer must be connected to drainage systems (wells, pipes) dimensioned on the basis of the maximum flow expected.

- **Strato impermeabile**: the thickness and material used must be evaluated in relation to its function as barrier against infiltration of meteoric waters and consequent probable migration of pollutants in depth.

2.3 **Controlli in fase di scelta e qualificazione del materiale**

The materials, whether natural (clay, gravel, sand, vegetation soil) or artificial (geosynthetics), utilized for the realization of a superficial covering system devolve to possess properties and characteristics corresponding to specific norms in matter. In the absence of particular prescriptions, they must be the best qualities present in commerce.

The controls finalized to verify the response of the products to the specific technical specifications, must give particular attention to the components that guarantee...
Linee guida per la verifica ed il collaudo delle barriere impermeabili per la messa in sicurezza di siti contaminati

l'impermeabilità e l'isolamento al sistema, senza tuttavia tralasciare gli altri materiali che concorrono ad un buon funzionamento della barriera o a preservare la sua efficienza nel tempo.

E' generalmente compito del costruttore fornire all’Ente di controllo le specifiche tecniche dei materiali impiegati sotto forma di schede, certificati di qualità, ecc.

2.3.1 Materiali per lo strato di regolarizzazione

Per la realizzazione dello strato di regolarizzazione è suggerito l'utilizzo di materiale limoso – sabbioso, le cui caratteristiche meccaniche e di compattazione devono essere indagate attraverso le seguenti prove di laboratorio:

<table>
<thead>
<tr>
<th>Prova</th>
<th>Frequenza</th>
<th>Metodologia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analisi granulometrica</td>
<td>1 ogni 500 m³</td>
<td>ASTM D2487, D422; UNI 10006</td>
</tr>
<tr>
<td>Contenuto idrico</td>
<td>1 ogni 500 m³</td>
<td>ASTM D2216</td>
</tr>
<tr>
<td>Limiti di Atterberg</td>
<td>1 ogni 500 m³</td>
<td>ASTM D4318 ; UNI 10014</td>
</tr>
<tr>
<td>Compattazione</td>
<td>1 ogni 500 m³</td>
<td>ASTM D698, D1557</td>
</tr>
</tbody>
</table>

Il materiale dovrà rispondere ai seguenti requisiti:

- pezzatura: 0 ÷ 4 mm;
- percentuale di trattenuto al vaglio ASTM 200 < 5% e comunque di dimensioni massime inferiori a 2 cm.

Dovrà essere specificata la provenienza del materiale (cave, cave di prestito).

2.3.2 Geomembrane

Le geomembrane sono lamine polimeriche utilizzate per l’impermeabilizzazione dei sistemi di coperture superficiali. In questo settore, le tipologie più utilizzate sono in polietilene (HDPE o LDPE, a seconda della densità), polivinilcloruro (PVC) e polietilene clorosolfonato (CSPE).

Per la valutazione del materiale costituente la geomembrana possono essere utili le seguenti considerazioni comparative tra i diversi tipi di polimero:

- **Impermeabilità**: tutti i tre polimeri presentano adeguate caratteristiche di impermeabilità, tuttavia i valori più bassi di conducibilità idraulica si ottengono con membrane in HDPE.
Caratteristiche meccaniche: le caratteristiche meccaniche variano con lo spessore della geomembrana. I teli in HDPE sono più rigidi, con una deformazione a snervamento pari al 10% circa, mentre quelli in PVC hanno un comportamento quasi perfettamente plastico (deformazione a snervamento pari a 300%). I teli CSPE hanno una resistenza meccanica intermedia.

Resistenza in condizioni limite (survivability): tutti i tre polimeri hanno sufficienti caratteristiche di resistenza se sottoposti a sforzi e deformazioni concentrate. Tuttavia i risultati migliori si ottengono con geomembrane flessibili (in particolare quelle in PVC).

Messa in opera: i fattori più importanti da tenere in considerazione sono la facilità di installazione e l'affidabilità delle giunture. Riguardo al primo aspetto, teli in PVC e CSPE sono più facili da posare in quanto la grande flessibilità permette un migliore adattamento al substrato, limitando inoltre il problema della formazione di rughe dovute all'espansione termica. Tuttavia, adottando opportune tecniche di installazione, anche con l'HDPE si possono ottenere risultati più che accettabili.

In riferimento all'affidabilità delle giunture, quelle tra teli in HDPE hanno caratteristiche di resistenza e durevolezza superiori.

Compatibilità chimica: l'HDPE presenta un'elevata compatibilità con diversi tipi di composti inquinanti che si trovano in siti contaminati, mentre il CSPE può degradarsi in presenza di idrocarburi e solventi clorurati. Il PVC presenta caratteristiche di compatibilità chimica abbastanza scadenti.

Durevolezza a lungo termine: i risultati più soddisfacenti vengono raggiunti con teli in HDPE in quanto materiale inerte e non suscettibile di degradazione chimica. I teli in PVC presentano le caratteristiche di durevolezza meno favorevoli.

Le caratteristiche tecniche delle membrane in polietilene ad alta densità (HDPE), preferibili a quelle in PVC e CSPE per le loro caratteristiche di durevolezza, impermeabilità e compatibilità chimica, sono fissate dalla norma UNI 8898-6\(^3\), che stabilisce i requisiti minimi per le geomembrane utilizzate per la costruzione dei sistemi barriera, sia di fondo sia di copertura, per discariche controllate di rifiuti solidi urbani e rifiuti industriali.

Le specifiche tecniche sono le seguenti:

\[^3\) UNI 8898-6 (2001) – Membrane polimeriche per opere di impermeabilizzazione - Membrane plastomeriche rigide - Caratteristiche e limiti di accettazione.
Caratteristiche tecniche	**Unità di misura**	**Valore**	**Metodologia**
Spessore | mm | 2 | UNI EN 1849-2; ASTM D 5199
Massa volumica | g/cm³ | > 0.94 | UNI 7092
Contenuto in nerofumo | % | > 2 | UNI 9556
Resistenza a rottura | Mpa | > 26 | UNI EN 12311 ASTM D 638
Allungamento a rottura | % | > 700 | UNI EN 12311 ASTM D 638
Resistenza allo snervamento | Mpa | > 15 | UNI EN 12311 ASTM D 638
Allungamento allo snervamento | % | > 9 | UNI EN 12311 ASTM D 638
Resistenza al punzonamento statico (CBR) | N | > 5000 | UNI EN ISO 12236
Resistenza al punzonamento dinamico | Classe | PD4 | UNI EN 12691
Resistenza a lacerazione | N/mm | > 130 | ASTM D751; UNI EN 12310
Stress cracking | Ore | > 1000 | ASTM D 1693
Stabilità dimensionale a caldo | % | < 2 | UNI EN 1107
Permeabilità al vapor d’acqua | g/m²/24h | < 723.6 | UNI 8202/23; ASTM E 96

Per quanto riguarda la valutazione delle caratteristiche tecniche di membrane in polietilene a bassa densità (LDPE), possono essere utili i seguenti valori:

Caratteristiche tecniche	**Unità di misura**	**Valore**	**Metodologia**
Spessore | mm | > 0.5 | UNI EN 1849-2; ASTM D 5199
Massa volumica | g/cm³ | 0.92 | UNI 7092 ; ASTM D1505
Resistenza a rottura | N/mm² | > 16 | UNI EN 12311; ASTM D 638
Allungamento a rottura | % | > 550 | UNI EN 12311; ASTM D 638
Resistenza al punzonamento statico (CBR) | N | > 4000 | UNI EN ISO 12236;
Resistenza a lacerazione | N/mm | 130 | ASTM D751; UNI EN 12310
Stabilità dimensionale | % | < 2 | UNI EN 1107

Per la verifica delle caratteristiche della geomembrana, la direzione lavori dovrà fornire una documentazione contenente le certificazioni del produttore, le specifiche...
Linee guida per la verifica ed il collaudo delle barriere impermeabili per la messa in sicurezza di siti contaminati

techniche del materiale, i risultati di eventuali controlli qualità e il certificato di prova di ciascun rotolo.

La ditta fornitrice dovrà operare con Sistema di Qualità conforme ai requisiti della normativa UNI EN ISO 9001 o 9002.

2.3.3 Strato minerale a bassa permeabilità

Se lo strato impermeabile è realizzato in materiale naturale, deve essere specificata la provenienza fornendo i nominativi della o delle cave di prestito che si intende utilizzare.

Per la qualifica del materiale all’origine è opportuno verificare i risultati delle seguenti prove:

<table>
<thead>
<tr>
<th>Prova</th>
<th>Frequenza</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analisi granulometrica</td>
<td>1 ogni 500 m³</td>
<td>ASTM D422 – UNI 10006</td>
</tr>
<tr>
<td>Contenuto idrico</td>
<td>1 ogni 500 m³</td>
<td>ASTM D2216</td>
</tr>
<tr>
<td>Limiti di Atterberg</td>
<td>1 ogni 500 m³</td>
<td>ASTM D4318 – UNI 10014</td>
</tr>
<tr>
<td>Compattazione (prova Proctor)</td>
<td>1 ogni 500 m³</td>
<td>ASTM D698 o D1557</td>
</tr>
</tbody>
</table>

Il materiale dovrà rispondere ai seguenti requisiti:
- contenuto in argilla: > 10 %;
- passante al setaccio 200 ASTM: > 30 %;
- Limiti di Atterberg
 - Limite liquido LL: 25 ÷ 50;
 - Indice di plasticità IP: 8 ÷ 30;
- Contenuto in ghiaia: < 40 %;
- Massima dimensione degli elementi lapidei: 2.5 cm;
- Conducibilità idraulica\(^4\): < 10\(^{-8}\) m/s.

2.3.4 Geocompositi bentonitici

I geocompositi bentonitici (GCL), costituiti da uno strato di argilla (bentonite sodica granulare) compreso tra due geotessili, vengono impiegati nella costituzione

\(^4\) La conducibilità idraulica deve essere determinata in apparecchio triassiale su provini ricostruiti a densità prossime a quella ottimale da Prova Proctor standard, con tensioni di confinamento comparabili con quelle medie agenti in sito.
La ditta fornitrice dovrà operare con Sistema di Qualità conforme ai requisiti della normativa UNI EN ISO 9001 o 9002.

2.3.5 Geotessili

Per assolvere alle funzioni di protezione dello strato impermeabile e di separazione dagli strati sovrastanti, si suggerisce l’impiego di geotessili nontessuti, costituito da fibre di polietilene ad alta densità o di polipropilene, in fiocco, unite mediante agugliatura meccanica e termofissazione, con esclusione di collanti o leganti chimici. Il geotessile dovrà in ogni caso possedere buone caratteristiche di durevolezza e compatibilità chimica, oltre che di resistenza meccanica.

Le caratteristiche tecniche dovranno corrispondere a quelle previste dalla norma UNI EN 13257\(^5\) che prevede i seguenti requisiti minimi:

<table>
<thead>
<tr>
<th>Caratteristiche tecniche</th>
<th>Unità di misura</th>
<th>Tipologia prodotto</th>
<th>Metodologia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massa areica</td>
<td>g/m²</td>
<td>Polipropilene</td>
<td>UNI EN 965 ; ASTM D5261</td>
</tr>
<tr>
<td>Resistenza a trazione longitudinale</td>
<td>kN/m</td>
<td>> 38 > 47 > 60</td>
<td>EN ISO 10319; ASTM D6768</td>
</tr>
<tr>
<td>Deformazione a carico massimo longitudinale</td>
<td>%</td>
<td>> 80 > 85 > 90</td>
<td></td>
</tr>
<tr>
<td>Resistenza a trazione trasversale</td>
<td>kN/m</td>
<td>> 38 > 47 > 60</td>
<td></td>
</tr>
<tr>
<td>Deformazione a carico massimo longitudinale</td>
<td>%</td>
<td>> 80 > 85 > 90</td>
<td></td>
</tr>
<tr>
<td>Resistenza al punzonamento statico (CBR)</td>
<td>N</td>
<td>>7000 > 9000 > 11000</td>
<td>UNI EN ISO 12236</td>
</tr>
<tr>
<td>Resistenza al punzonamento dinamico</td>
<td>mm</td>
<td>< 5 0 0</td>
<td>UNI EN 918</td>
</tr>
<tr>
<td>Durabilità</td>
<td>mesi</td>
<td>> 1 > 1 > 1</td>
<td>UNI EN 12224</td>
</tr>
</tbody>
</table>

La ditta fornitrice dovrà operare con Sistema di Qualità conforme ai requisiti della normativa UNI EN ISO 9001 o 9002.

\(^5\) UNI EN 13257 (2002) – Geotessili e prodotti affini - Caratteristiche richieste per l’impiego in discariche per rifiuti solidi
Poiché le fibre con cui sono realizzati i geotessili sono suscettibili a deterioramenti dovuti all’esposizione ai raggi UV, occorre prestare attenzione che il materiale non stazioni esposto ai raggi solari per un periodo superiore a quello specificato dal fornitore (ASTM D4873\(^6\)).

2.3.6 Strato drenante

Per la realizzazione degli strati drenanti possono essere utilizzati materiali naturali (ghiaia e sabbia) e/o artificiali (georeti e geocompositi drenanti).

Nel primo caso i controlli da effettuare riguardano la qualifica del materiale, in particolare delle sue caratteristiche granulometriche, di permeabilità e di contenuto in carbonati.

<table>
<thead>
<tr>
<th>Prova</th>
<th>Frequenza</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analisi granulometrica</td>
<td>1 ogni 1000 m³</td>
<td>UNI 10006 - ASTM D422</td>
</tr>
<tr>
<td>Permeabilità</td>
<td>1 ogni 1000 m³</td>
<td>ASTM D5084</td>
</tr>
<tr>
<td>Contenuto in carbonati</td>
<td>1 ogni 1000 m³</td>
<td>ASTM D4373</td>
</tr>
</tbody>
</table>

Il materiale dovrà rispondere ai seguenti requisiti:

- contenuto in fine (passante al vaglio 200 ASTM): < 5 %;
- dimensione massima degli elementi lapidei: < 30 mm;
- contenuto in carbonati: < 5 %;
- conducibilità idraulica: > 1 \(\cdot\) \(10^{-4}\) m/s.

I geocompositi drenanti sono prodotti prefabbricati costituiti da una struttura polimerica tridimensionale (georete), generalmente in HDPE, che costituisce il nucleo del geocomposito e funge da veicolo delle acque filtrate, racchiusa da due strati di geotessile filtrante con la funzione di far passare le acque fino al nucleo drenante, impedendo il dilavamento della componente fine del terreno e mantenendo l’efficacia drenante nel tempo.

Per una verifica delle caratteristiche tecniche si può fare riferimento ai seguenti valori:

\(^6\) ASTM D 4873 – 02 “Standard Guide for Identification, Storage, and Handling of Geosynthetic Rolls and Samples”
della barriera impermeabile, in sostituzione o in combinazione con lo strato di argilla compattata.

I vantaggi derivati dall’uso di questa tecnologia riguardano una certa facilità e rapidità nell’installazione, la possibilità di raggiungere coefficienti di permeabilità estremamente bassi e la capacità di far fronte ad eventuali danneggiamenti sfruttando le capacità rigonfianti della bentonite sodica.

Per la valutazione dell’affidabilità del materiale vanno verificate le caratteristiche tecniche, sia del prodotto nella sua globalità sia delle singole componenti (geotessili di rivestimento e bentonite), specificate dalle schede tecniche fornite dal produttore.

I materiali dovranno rispondere alle seguenti caratteristiche (riferite ad uno spessore del prodotto finito pari a 6.0 mm):

<table>
<thead>
<tr>
<th>GEOTESSILI DI CONTENIMENTO</th>
<th>Caratteristiche tecniche</th>
<th>Unità di misura</th>
<th>Valore</th>
<th>Metodologia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massa areica</td>
<td>g/m²</td>
<td>> 110</td>
<td></td>
<td>UNI EN 965</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GEOCOMPOSITO BENTONITICO</th>
<th>Spessore</th>
<th>mm</th>
<th>5.5</th>
<th>EN 964 – 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficiente di permeabilità (oppure indice di flusso)</td>
<td>m/s</td>
<td>< 5 · 10⁻¹¹</td>
<td>ASTM D5084 (ASTM D5887)</td>
<td></td>
</tr>
<tr>
<td>Resistenza al punzonamento statico</td>
<td>N</td>
<td>> 2500</td>
<td>EN ISO 12236</td>
<td></td>
</tr>
<tr>
<td>Resistenza a trazione longitudinale</td>
<td>kN/m</td>
<td>> 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deformazione a carico massimo longitudinale</td>
<td>%</td>
<td>> 10</td>
<td>ASTM D6768; EN ISO 10319</td>
<td></td>
</tr>
<tr>
<td>Resistenza a trazione trasversale</td>
<td>kN/m</td>
<td>> 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deformazione a carico massimo trasversale</td>
<td>%</td>
<td>> 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massa areica</td>
<td>g/m²</td>
<td>> 4000</td>
<td>ASTM D5261; UNI EN 965</td>
<td></td>
</tr>
</tbody>
</table>

BENTONITE	Contenuto in montmorillonite	%	> 98	
-----------	-----------------------------	----	------	
Indice di rigonfiamento	2g/100 ml/ 24h	> 25	ASTM D5890	
Massa areica	kg/m²	> 4.5	prEN 14196	
I geocompositi drenanti dovranno inoltre possedere: inerzia chimica totale, imputrescibilità, inattaccabilità da parte di roditori e microrganismi, insensibilità agli agenti atmosferici e all'acqua salmastra, stabilità ai raggi ultravioletti ottenuta mediante adatti quantitativi di nerofumo.

La ditta fornitrice dovrà operare con Sistema di Qualità conforme ai requisiti della normativa UNI EN ISO 9001 o 9002.

2.3.7 Terreno per lo strato di protezione e superficiale

Il materiale può essere qualificato attraverso l’applicazione delle seguenti prove:

<table>
<thead>
<tr>
<th>Prova</th>
<th>Frequenza</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analisi granulometrica</td>
<td>1 ogni 2500 m³</td>
<td>ASTM D422 – UNI 10006</td>
</tr>
<tr>
<td>Contenuto idrico</td>
<td>1 ogni 2500 m³</td>
<td>ASTM D2216</td>
</tr>
<tr>
<td>Compattazione (prova Proctor)</td>
<td>1 ogni 2500 m³</td>
<td>ASTM D698 o D1557</td>
</tr>
</tbody>
</table>

Il materiale deve possedere caratteristiche compatibili con la destinazione d'uso finale (vegetale o di altro tipo). Esso deve essere privo di clasti spigolosi che potrebbero danneggiare i geosintetici utilizzati per il drenaggio delle acque meteoriche o per l'impermeabilizzazione.

Se la copertura ha una destinazione d'uso ad aree verdi, andrebbe verificato il valore di pH del terreno vegetale utilizzato, in quanto ambienti troppo acidi risultano dannosi per lo sviluppo vegetazionale; i valori ottimali sono compresi tra 6.5 e 7.5. Esso inoltre dovrebbe contenere una percentuale di materia organica compresa tra il 5 e il 20 %.
2.4 **Controlli in corso d’opera sui singoli materiali, sul confezionamento e sulla posa**

I controlli in corso d’opera vengono attuati allo scopo di verificare la rispondenza degli interventi sia in termini di idoneità dei materiali impiegati sia di corretta esecuzione dei lavori.

Nella costruzione di coperture multistrato, ciascuno strato dovrebbe essere posato solo dopo avere accertato, anche mediante l’esecuzione di prove di controllo, l’idoneità dello strato sottostante.

Il primo elemento da tenere in considerazione è la preparazione del piano di posa: occorre accertarsi che le dimensioni del perimetro esterno dell’area di lavoro rispettino l’estensione prevista dalla progettazione.

Il substrato del sistema di copertura deve essere completamente privo di irregolarità ed adeguatamente compattato, in funzione delle specifiche progettuali e alla destinazione d’uso.

A conclusione delle operazioni di compattazione, deve essere eseguito un controllo piano altimetrico allo scopo di accertare che le quote rispettino le tolleranze previste dalle specifiche progettuali.

2.4.1 Strato di regolarizzazione

Lo spessore dello strato di regolarizzazione deve essere non inferiore a 0.5 m; al fine di verificare la rispondenza del materiale alle specifiche tecniche richieste, è opportuna l’esecuzione delle seguenti prove:

<table>
<thead>
<tr>
<th>Prova</th>
<th>Frequenza</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carico su piastra (valore max 250 kg/cm²)</td>
<td>1 ogni 2000 m² di materiale steso</td>
<td>SNV 670317</td>
</tr>
</tbody>
</table>
| Densità in sito | 1 ogni 2000 m² di materiale steso | ASTM D1556
| Analisi granulometrica | 1 campione ogni 2000 m² di materiale steso | ASTM D422 – UNI 10006 |

La prova di carico su piastra consiste nel caricare con incrementi successivi e regolari una piastra rigida (generalmente circolare) appoggiata sul terreno di prova, misurando il cedimento corrispondente ad ogni incremento di carico, con possibilità

7 Metodo con volumometro a sabbia.
di effettuare cicli di carico e scarico; i risultati sono restituiti sotto forma di un grafico carichi-cedimenti.

Controllare che il materiale venga compattato in modo tale da ottenere un grado di compattazione non inferiore al 95% del valore ottimale risultante da Prova Proctor Standard.

2.4.2 Geomembrane

Al fine di certificare l’integrità dello strato di impermeabilizzazione, occorre verificare l’idoneità delle operazioni di posa e di saldatura dei teli, oltre che la rispondenza del materiale alle specifiche tecniche fornite dal produttore.

2.4.2.1 Controlli sulla posa dei teli

Prima della stesura occorre assicurarsi che le procedure di imballaggio, trasporto e movimentazione non abbiano danneggiato il materiale; i rotoli, i quali devono essere riconoscibili attraverso un apposito contrassegno di identificazione che ne illustra le specifiche tecniche, devono essere stoccati in un luogo riparato dagli agenti atmosferici e coperti con teli opachi per evitare l’esposizione diretta ai raggi UV (ASTM D4873).

Il piano di posa deve essere liscio e totalmente privo di ristagni d’acqua piovana o di qualsiasi materiale potenzialmente dannoso per l’integrità della geomembrana. Dopo averne accertata l’idoneità, tramite ispezioni, si deve procedere immediatamente alla stesura dei teli per evitare il deterioramento ad opera degli agenti atmosferici.

La disposizione dei teli deve soddisfare alcuni requisiti che riguardano principalmente il numero e la geometria delle giunture; in particolare occorre minimizzare il numero delle giunture in quanto rappresentano le linee di debolezza dell’intero sistema di impermeabilizzazione.

Esse dovranno inoltre essere parallele alle linee di massima pendenza e mai troppo vicine al piede di eventuali scarpate. In questo senso, la disposizione dei teli potrà essere valutata attraverso un’apposita planimetria (diagramma di posa) indicante la disposizione dei teli e delle corrispondenti giunture. I teli dovranno essere identificati in modo univoco sul diagramma di posa, tramite numerazione, e così pure le giunture. La sovrapposizione tra teli adiacenti non deve essere inferiore a 15 cm.

Durante le operazioni di posa, deve essere prelevato un campione di geomembrana ogni 10000 m2 di materiale posato su cui vanno eseguite le seguenti prove:

- **spessore** (ASTM D5199; UNI EN 1849);
- **resistenza a rottura** (ASTM D638, UNI EN 12311);
- **allungamento a rottura** (ASTM D638, UNI EN 12311);
- **resistenza al punzonamento** (UNI EN 12236)
Linee guida per la verifica ed il collaudo delle barriere impermeabili per la messa in sicurezza di siti contaminati

I risultati vanno confrontati con i valori specificati dal fornitore della geomembrana, al fine di verificarne l’assoluta corrispondenza.

2.4.2.2 Controlli sulla saldatura dei teli

Poiché la saldatura dei teli è un’operazione delicata da cui può dipendere l’efficienza dell’intero sistema di copertura, essa deve essere realizzata con accessori e tecniche specifiche da personale qualificato, secondo gli standard imposti dalla norma UNI 10567.

Le tecniche di saldatura possono essere sostanzialmente di due tipologie a caldo e a freddo. La più diffusa, anche per le migliori prestazioni offerte in termini di tenuta, è la saldatura a caldo che si realizza per sovrapposizione di due teli che vengono giuntati da una attrezzatura movente a cuneo caldo (Figura 4 e 5); questo tipo di sistema è detto anche a doppia pista, in quanto realizza una doppia giunzione lasciando tra le due fasce saldate un canale intermedio utilizzato per testare la tenuta della giuntura stessa.

Per la finitura di angoli o zone in cui non si può ricorrere alla saldatura a cuneo caldo si può ricorrere alla saldatura per estrusione con materiale di riporto. In questo caso si sovrappone ai due teli del materiale di riporto, con identiche caratteristiche tecniche, saldato a caldo.

La giunzione a freddo avviene con l’impiego di collante o nastro autoadesivo, applicati per mezzo di presse meccaniche.

Figura 4 – Geomembrane: saldatura a caldo

UNI 10567 (31/10/1996) - Membrane di polietilene per impermeabilizzazione di discariche controllate. Criteri generali per la saldatura ed il controllo della qualità dei giunti saldati.
Figura 5 – Geomembrane: saldature a doppia pista

L’affidabilità delle giunture deve essere controllata attraverso l’esecuzione dei seguenti test:

<table>
<thead>
<tr>
<th>Prove</th>
<th>Frequenza</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test su giunture di prova</td>
<td>2 per giornata di lavoro</td>
<td>UNI 10567</td>
</tr>
<tr>
<td>Test non distrutti</td>
<td>1 per giuntura</td>
<td></td>
</tr>
<tr>
<td>Test distrutti</td>
<td>1 ogni 100 m</td>
<td>UNI 10567</td>
</tr>
</tbody>
</table>

I test non distrutti, applicati alle saldature a doppia pista, consistono nell’immissione di aria compressa all’interno del canale intermedio tra le due fasce saldate a doppia pista e nella verifica della tenuta nell’arco di un tempo pari a 10 minuti. La pressione applicata è proporzionale alla temperatura e allo spessore della geommbrana (ad esempio per un telo di HDPE a 20 °C la pressione da applicare è di circa 5 – 6 bar). La prova si considera superata quando l’eventuale caduta di pressione non supera il 10 % del valore imposto.

Le saldature per estrusione devono essere controllate con un rilevatore ultrasonoro, costituito da una sonda emittente e ricevente che, dopo opportuna taratura, permette di misurare lo spessore della saldatura evidenziandone eventuali discontinuità.

I test distrutivi, tra cui rientrano anche quelli eseguiti sulle giunture di prova, vengono eseguiti su campioni prelevati in sito, approssimativamente quadrati di lato minimo pari a 30 cm, su cui vengono misurate:

- resistenza al taglio o shear strength (UNI 8202/30): la giuntura deve essere in grado di sopportare uno sforzo pari all’80 % del valore specificato per la geomembrana;
2.4.3 Strato minerale a bassa permeabilità

Lo strato di argilla compattata deve avere uno spessore non inferiore a 0.6 m, uniformemente distribuito in tutta l’area di lavoro.

Le caratteristiche tecniche del materiale posato vanno verificate attraverso l’esecuzione delle seguenti prove:

MATERIALE NON COMPATTATO

<table>
<thead>
<tr>
<th>Prova</th>
<th>Frequenza</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analisi granulometrica</td>
<td>1 ogni 4000 m²</td>
<td>ASTM D422 – UNI 10006</td>
</tr>
<tr>
<td>Contenuto idrico</td>
<td>1 ogni 4000 m²</td>
<td>ASTM D2216</td>
</tr>
<tr>
<td>Limiti di Atterberg</td>
<td>1 ogni 4000 m²</td>
<td>ASTM D4318 – UNI 10014</td>
</tr>
</tbody>
</table>

MATERIALE COMPATTATO

<table>
<thead>
<tr>
<th>Prova</th>
<th>Frequenza</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densità secca in sito</td>
<td>1 ogni 1000 m²</td>
<td>ASTM D1556</td>
</tr>
<tr>
<td>Densità secca massima in laboratorio</td>
<td>1 ogni 500 m²</td>
<td>ASTM D698 o D1557</td>
</tr>
<tr>
<td>Contenuto idrico</td>
<td>1 ogni 500 m²</td>
<td>ASTM D2216</td>
</tr>
<tr>
<td>Conducibilità idraulica</td>
<td>1 ogni 4000 m²</td>
<td>ASTM D5084⁹</td>
</tr>
</tbody>
</table>

Un fattore importante da valutare è il grado di compattazione, il quale deve essere superiore al 95% del valore ottimale ottenuto con Prova Proctor Standard (ASTM D698).

A questo scopo occorre accertarsi, eventualmente con sopralluoghi, che le operazioni si svolgano utilizzando un rullo statico di peso adeguato (non inferiore a 15 t) e che venga eseguito un numero sufficiente di passate.

⁹ Metodo con permeametro a parete flessibile
2.4.3.1 Rilievo elettromagnetico per l’individuazione delle zone a minor contenuto in argilla

Prima dell’esecuzione delle prove con permeametri è opportuno eseguire un rilievo elettromagnetico, al fine di valutare il grado di omogeneità dell’impermeabilizzazione e anche per selezionare i punti più idonei per l’esecuzione delle prove di permeabilità in sito.

Il rilievo dovrà avere una profondità di esplorazione limitata al primo metro ed una maglia dell’ordine di 2 x 2 m.

I dati ottenuti dovranno essere interpolati con un software adeguato al fine di ottenere una carta della conducibilità elettrica (millimhos) del terreno. Le prove di permeabilità in sito andranno eseguite nei punti in cui la conducibilità elettrica risulta minore (deve quindi è probabile che il contenuto in argilla o materiali fini sia minore).

2.4.3.2 Prove di conducibilità idraulica sullo strato minerale compattato

Per la valutazione della conducibilità idraulica dello strato di argilla compattata, devono essere eseguite sia prove in laboratorio sia in sito. Sono da considerarsi accettabili valori di conducibilità idraulica inferiori a 10^{-8} m/s.

Le prove in laboratorio possono essere eseguite su campioni compattati in laboratorio o su campioni “indisturbati” prelevati direttamente dallo strato di argilla compattata. In entrambi i casi sussiste il rischio che il campione non sia sufficientemente rappresentativo delle reali condizioni del sito. Nei campioni indisturbati la non rappresentatività può essere dovuta al fatto che la conducibilità idraulica reale è governata dalle caratteristiche macrostrutturali (fratture di essiccamiento, macropori) che costituiscono vie preferenziali di filtrazione. In questo caso i valori di conducibilità forniti dalle prove di laboratorio sono sottostimati (anche di oltre un ordine di grandezza) rispetto a quelli reali.

Nel caso di campioni compattati in laboratorio, i valori di conducibilità possono non essere rappresentativi a causa delle difficoltà nel riprodurre esattamente le condizioni di compattazione prodotte meccanicamente in sito.

I metodi utilizzati per la misura della conducibilità in laboratorio prevedono l’utilizzo di celle edometriche, permeametri a parete rigida e a parete flessibile.

Le prove edometriche hanno lo svantaggio di fornire valori di conducibilità ottenuti per via indiretta, in funzione del coefficiente di consolidazione primaria e del modulo edometrico, e quindi poco precisi.

Le prove con permeametri a parete rigida sono facilmente eseguibili e relativamente economiche. I valori di conducibilità idraulica ottenuti con questo strumento possono essere poco rappresentativi a causa dell’impossibilità di controllare le tensioni di confinamento e dei problemi legati alla filtrazione laterale.

Tra le prove di laboratorio, i risultati più attendibili sono forniti da prove di permeabilità con permeametro a parete flessibile poiché consentono di verificare le...
condizioni al contorno del campione durante l’esecuzione della prova (tensioni efficaci, variazioni di volume).

Le prove di conducibilità in sito, da eseguire nei punti individuati a seguito del rilievo elettromagnetico, sono importanti come mezzo di verifica e controllo finale delle prestazioni dello strato in argilla compattata in termini di impermeabilità; gli strumenti più comunemente utilizzati sono il permeametro di Boutwell e gli infiltrometri.

La prova con permeametro di Boutwell viene eseguita in foro in due fasi successive, variando la geometria della superficie interessata dalla filtrazione; in questo modo è possibile ottenere i valori delle componenti orizzontale e verticale della conducibilità idraulica. Gli svantaggi relativi a questo tipo di prova consistono nella limitata estensione dell’area investigata e nell’impossibilità di tenere conto della suzione del terreno.

Gli infiltrometri sono strumenti di prova che permettono di valutare in maniera più attendibile il comportamento idraulico globale. Attualmente il modello più affidabile è l’infiltrometro a doppio anello sigillato che consiste in un anello esterno, con la funzione di assicurare una filtrazione monodimensionale nell’anello interno e in un sistema di misura di vari parametri tra cui l’infiltrazione, la posizione del fronte bagnato, il rigionfiamento del terreno permeato e la suzione.

Ulteriori dettagli relativi all’esecuzione delle prove con permeametro di Boutwell e con infiltrometri sono riportate in Appendice 4.

2.4.4 Geocompositi bentonitici

Prima della stesura occorre assicurarsi che le procedure di imballaggio, trasporto e movimentazione non abbiano danneggiato il materiale; i rotoli, i quali devono essere riconoscibili attraverso un apposito contrassegno di identificazione che ne illustra le specifiche tecniche, devono essere stoccati in un luogo riparato dagli agenti atmosferici e coperti da teli (ASTM D4873).

Il substrato di posa, adeguatamente compattato10, deve essere privo di materiali come elementi lapidei, detriti, radici o altro, potenzialmente dannosi per l’integrità dei teli in GCL. In linea di massima il substrato, non dovrebbe presentare alcun elemento di diametro superiore a 2.5 cm.

10 Almeno al 90 % del valore ottimale determinato da Prova Proctor Standard.
Figura 6 – Geocompositi bentonitici: sigillatura con bentonite sodica granulare

Durante la posa deve essere verificata, tramite sopralluoghi in sito, la sovrapposizione tra teli adiacenti che non deve essere inferiore a 20 cm e la disposizione degli stessi, la quale deve essere parallela alle linee di massima pendenza. La disposizione dei teli potrà essere valutata attraverso un’apposita planimetria (diagramma di posa) indicante la disposizione dei teli e delle corrispondenti giunture. I teli dovranno essere identificati in modo univoco sul diagramma di posa, tramite numerazione, e così pure le giunture.

È opportuno il prelievo di alcuni campioni di geocomposito bentonitico, almeno uno ogni 10000 m², al fine di verificare la rispondenza alle specifiche tecniche; i parametri da valutare con maggiore attenzione sono i seguenti:

- massa areica (prEN 14196; ASTM D 5261; UNI EN 965)
- spessore (EN 964 – 1)
- coefficiente di permeabilità o indice di flusso (ASTM D 5887; D5084)

In corrispondenza delle giunture tra teli adiacenti (Figura 6), deve essere verificata la sigillatura in bentonite sodica granulare (generalmente dello stesso tipo di quella utilizzata per la costruzione del geocomposito e fornita dallo stesso produttore). Per un controllo delle sue caratteristiche in punti singolari della copertura, si suggerisce di prelevarne alcuni campioni da sottoporre in laboratorio alle seguenti prove:

- limiti di Atterberg (ASTM D4318 – UNI 10014);
- indice di rigonfiamento (ASTM D5890);
- coefficiente di permeabilità (ASTM D508411)

I risultati ottenuti devono essere compatibili con le specifiche tecniche fornite dal produttore.

11 Permeametro a parete flessibile
2.4.5 Geotessili di protezione

Prima della stesura occorre assicurarsi che le procedure di imballaggio, trasporto e movimentazione non abbiano danneggiato il materiale; i rotoli, i quali devono essere riconoscibili attraverso un apposito contrassegno di identificazione che ne illustra le specifiche tecniche, devono essere stoccati in un luogo riparato dagli agenti atmosferici e coperti da teli opachi per evitare l’esposizione diretta ai raggi UV (ASTM D4873).

Ogni rotolo presente in cantiere dovrà essere identificato a norma EN ISO 1032012.

Durante la posa, deve essere verificata una sovrapposizione tra teli adiacenti di almeno 20 cm, al fine di garantire la continuità dei teli. Dal materiale posato devono essere prelevati alcuni campioni (uno ogni 20000 m2 e comunque in numero non inferiore a 2) per essere sottoposti alle seguenti prove:

- determinazione della massa areica (ASTM D5261, UNI EN 965);
- spessore a 20 kPa (UNI EN 964 – 1);
- resistenza a punzontamento (CBR) (UNI EN ISO 12236).

I risultati ottenuti devono essere rispondenti alle specifiche tecniche fornite dal produttore.

Non ci sono particolari criteri di controllo sulla giunture tra teli adiacenti, tuttavia si sottolinea che le cuciture non dovrebbero presentare fili o graffette in metallo.

Una volta completata la stesura, occorre assicurarsi che i teli non siano esposti al diretto passaggio di mezzi meccanici, prima della messa in opera degli stati successivi.

2.4.6 Strato drenante

Vengono di seguito presentati i controlli in corso d’opera relativi ai materiali che possono costituire lo strato di drenaggio delle acque superficiali in un sistema di copertura superficiale.

2.4.6.1 Materiali naturali

I controlli devono essere effettuati allo scopo di verificare il rispetto delle pendenze e degli spessori adottati in fase progettuale e la rispondenza del materiale alle specifiche tecniche.

12 UNI EN ISO 10320 (2002) – Geotessili e prodotti affini - Identificazione in sito
Per quanto riguarda il primo aspetto, una volta completate le operazioni di posa che devono essere eseguite adottando adeguate cautele per non danneggiare i geotessili di protezione e il sottostante strato impermeabile, andrebbe richiesta l’esecuzione di un rilievo topografico di dettaglio per una verifica delle quote di progetto.

Le caratteristiche qualitative del materiale devono essere verificate prelevando una serie di campioni da sottoporre a prove in laboratorio e con prove di permeabilità in sito. La frequenza delle prove è la seguente:

<table>
<thead>
<tr>
<th>Prova</th>
<th>Frequenza</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analisi granulometrica</td>
<td>1 ogni 5000 m²</td>
<td>ASTM D422 – UNI 10006</td>
</tr>
<tr>
<td>Contenuto in carbonati</td>
<td>“…”</td>
<td>ASTM D4373</td>
</tr>
</tbody>
</table>

La stima della conduttività idraulica dello strato drenante può essere effettuata con prove di permeabilità in pozzetto (almeno una 1000 m²).

2.4.6.2 Geocompositi drenanti

Come per le altre tipologie di geosintetici occorre accertarsi che le procedure di imballaggio, trasporto e movimentazione non abbiano danneggiato il materiale e che i rotoli siano stoccati in un luogo riparato dagli agenti atmosferici e coperti da teli opachi per evitare l’esposizione diretta ai raggi UV (ASTM D4873).

Deve essere verificata la procedura di istallazione; in particolare i teli vanno installati lungo la direzione di massima pendenza in quanto, in gran parte dei geocompositi in commercio, il flusso idrico avviene lungo la direzione longitudinale.

Le estremità dei geocompositi devono essere unite lungo la larghezza del rotolo con la porzione di georete del geocomposito superiore sovrapposta alla porzione inferiore, per un minimo di 0.30 m.

Un volta completata la stesura del geocomposito drenante, il materiale deve essere campionato (un campione ogni 10000 m²) per essere sottoposto alle seguenti prove di laboratorio:

- massa areica (UNI EN 965);
- resistenza a trazione (UNI EN ISO 10319);
- trasmissività longitudinale (EN ISO 12958);

I risultati delle prove devono essere confrontati con le specifiche fornite dal produttore.
2.5 **Controlli ad opere ultimate**

I controlli ad opere ultimate vengono realizzati per accertare il comportamento del sistema di copertura superficiale nelle reali condizioni di esercizio e, come per i controlli in corso d’opera, hanno la funzione di verificare la conformità dell’opera realizzata alle specifiche progettuali.

Le prove necessarie in questa fase si possono sostanzialmente classificare in prove non invasive o non distruttive, principalmente di tipo geofisico, e prove invasive, che a differenza delle precedenti necessitano di un intervento diretto sull’opera (perforazioni, infissione di strumenti, ecc.).

2.5.1 **Valutazione dell’integrità di geomembrane con metodi geoelettrici**

I metodi geoelettrici permettono di operare un controllo sia immediatamente dopo la posa dei teli in HDPE (e quindi prima d’inizio della fase di riempimento quando sono più semplici gli interventi di riparazione), sia in tempi successivi per un monitoraggio in continuo dello stato di fatto.

Il metodo è basato sull’elevata resistività elettrica propria del polietilene ad alta densità (HDPE), costituente la geomembrana. In tal modo, se la struttura è realizzata correttamente, la geomembrana determina un perfetto isolamento elettrico tra il materiale contenuto al suo interno e il terreno circostante. Il monitoraggio, pertanto, consiste nella misura della continuità dell’isolamento elettrico.

![Diagramma di monitoraggio geoelettrico](image)

Figura 7 – Distribuzione del campo elettrico in condizioni di buon isolamento. A e B: elettrodi di corrente; M e N: elettrodi di potenziale.

Tramite una coppia di elettrodi A e B, posizionati uno sulla superficie del terreno all’interno dell’area da controllare e l’altro all’esterno, a debita distanza, si stabilisce una circolazione di corrente mediante l’applicazione di una differenza di potenziale tra i due elettrodi.
In condizioni normali, a membrana integra, si registra una debole corrente di perdita (0.2-200 µA per 100 V di tensione applicata) e il potenziale elettrico all’interno dell’area impermeabilizzata risulta praticamente costante. La misura del potenziale elettrico relativo, realizzata sulla superficie tramite una seconda coppia di elettrodi MN, mostra una distribuzione uniforme del campo elettrico (debolmente decrescente dal punto di energizzazione interno verso i bordi dell’area impermeabilizzata).

Figura 8 – Distribuzione del campo elettrico in presenza di una lacerazione nella geomembrana

Quando, viceversa, nella membrana è presente una fessura o una lacerazione e si origina una perdita (Figura 8), attraverso di essa viene a crearsi un marcato flusso di corrente con una conseguente forte caduta del potenziale elettrico nelle sue immediate vicinanze.

Il monitoraggio del potenziale consente pertanto di verificare l’esistenza e la posizione della perdita stessa.

Figura 9 – Anomalia di potenziale dovuta alla presenza di una lacerazione nella geomembrana.
La Figura 9 mostra la tipica anomalia nella misura del potenziale: la perdita è localizzata nel punto centrale tra i due picchi positivo e negativo.

Il rilievo può essere realizzato sia sul materiale di protezione messo in posto subito sopra la geomembrana, o successivamente sul suolo di copertura superficiale. Esso viene effettuato mediante l'esecuzione di una dettagliata serie di misure del potenziale elettrico, distribuite sulla superficie da indagare secondo una maglia quadrata regolare. Al fine di ottenere la massima risoluzione è raccomandabile una elevata densità di punti di misura, in quanto è stato verificato che la massima risposta si verifica quando il profilo attraversa la verticale della perdita. Normalmente si eseguono rilievi secondo un passo di misura di 1 x 1 m.

2.5.2 Metodi invasivi: lisimetri e campionatori BAT

Questi metodi consistono nel campionamento in situ delle acque interstiziali nella porzione di terreno sottostante la copertura impermeabile allo scopo di verificare l’efficacia dell’intervento nell’impedire l’infiltrazione delle acque meteoriche attraverso il suolo contaminato.

Vengono di seguito descritti i due sistemi più comunemente utilizzati: i lisimetri a suzione ed i campionatori a punta filtrante (campionatori BAT o filter tip samplers).

2.5.2.1 Lisimetri a suzione

I lisimetri a suzione sono costituiti da una coppa porosa applicata all’estremità di una tubazione, solitamente disponibile in PVC o in acciaio inossidabile, mentre la coppa può essere realizzata in ceramica, nylon, PTFE (poliettrafluoro etilene)13 o metalli sinterizzati.

Il funzionamento del lisimetro è basato sull’applicazione di una pressione negativa all’interno del campionatore, che instaura un gradiente di potenziale tra l’interno del lisimetro e il terreno.

13 È il più noto tra i polimeri fluorurati, comunemente indicato con le denominazioni commerciali registrate quali: Teflon®, Fluon, Algoflon, Hostaflon.
L’acqua interstiziale viene raccolta all’interno del lisimetro e quindi recuperata in superficie per mezzo di una tubazione.

In alcuni casi il flusso attraverso la coppa porosa può essere estremamente lento: è quindi necessario mantenere a lungo il vuoto all’interno del lisimetro per permettere il recupero di un volume di liquido sufficiente.

I lisimetri a suzione possono essere di due tipi: a vuoto oppure a pressione e vuoto. Il lisimetro a vuoto (Figura 10), che consente di campionare fino a 2 m circa di profondità, è costituito da una coppa porosa posta all’estremità inferiore di un corpo cilindrico isolato e collegato alla superficie con una tubazione di piccolo diametro.

Viene prima creato il vuoto all’interno del lisimetro per mezzo di una pompa manuale attaccata a un tubicino che raggiunge la coppa porosa. Dopo avere atteso un tempo sufficiente affinché il liquido sia penetrato all’interno dello strumento, il campione di liquido viene recuperato applicando nuovamente il vuoto.

Il lisimetro a pressione e vuoto (Figura 11) è costituito da un corpo cilindrico di diametro pari a circa 2” e lunghezza pari a circa 30 cm. Due tubi collegano il lisimetro alla superficie; uno, detto linea di scarico, raggiunge il fondo del lisimetro, mentre l’altro, detto linea pressione – vuoto, si ferma nella parte posteriore dello stesso.

Per il campionamento viene applicata una pressione negativa all’interno del lisimetro collegando una pompa a vuoto alla linea vuoto – pressione, mentre la linea di scarico viene esclusa per mezzo di una valvola.

Dopo un tempo sufficientemente lungo, è possibile riaprire entrambe le valvole poste sulle tubazioni ed applicare una pressione positiva all’interno del lisimetro, recuperando il campione dalla linea di scarico.

La profondità massima raggiungibile con questo tipo di lisimetro è pari a 20 m.

2.5.2.2 Campionatori a punta filtrante o BAT (filter tip samplers)

I campionatori a punta filtrante sono simili ai lisimetri a suzione, ma si differenziano da questi dal momento che non possiedono nessuna linea di pressione che si estende fino in superficie. Nei campioni a punta filtrante il campione viene
raccolto per effetto del richiamo esercitato da un provino all'interno del quale viene anticipatamente creato il vuoto.

Il provino viene calato in profondità tramite un cavo zavorrato il cui peso permette la perforazione del setto di chiusura del provino da parte di un ago ipodermico solidale con la punta filtrante del campionatore.

La maggiore limitazione di questo metodo è legata ai tempi necessari al recupero di un quantitativo adeguato di liquido.

![Figura 12 - Campionatore a punta filtrante o BAT.](image)

2.6 Interventi di manutenzione ordinaria, straordinaria e piani di emergenza

La modalità e la tempistica degli interventi di manutenzione ordinaria delle opere deve essere specificata nel progetto al fine di mantenere nel tempo la loro efficienza.

Deve essere inoltre formulato un piano di emergenza da attuare nei casi in cui la rete di monitoraggio evidenzi episodi di inquinamento, specificando anche in questo caso la tempistica e le modalità di intervento.

Nel caso si configurino interventi straordinari, quali ad esempio la messa in opera di sottoservizi (tubature gas metano, rete elettrica, collettori fognari, ecc.) che interferiscano con le opere realizzate, devono essere previste particolari precauzioni sia in fase di realizzazione sia in fase di successivo ripristino.
3 BARRIERE FISICHE VERTICALI

3.1 Generalità e principali tipologie costruttive

Per la messa in sicurezza di siti contaminati vengono spesso utilizzate barriere fisiche verticali, laterali o perimetrali; le tecnologie impiegate sono derivate, nella maggior parte dei casi, dall’esperienza maturata nel campo degli interventi geotecnici, con particolare riferimento alle opere di sostegno di scavi, al consolidamento dei terreni e alla realizzazione di barriere idrauliche. L’applicazione e il conseguente adattamento di queste tecniche in campo ambientale risale alla seconda metà degli anni settanta, tanto che attualmente esiste una pratica consolidata per quanto riguarda gli aspetti progettuali ed una sufficiente esperienza nelle metodiche esecutive nata dall’osservazione delle opere realizzate e dal loro monitoraggio.

Non è tuttavia ancora disponibile una casistica documentata per potere effettuare valutazioni prestazionali a medio e a lungo termine. Per questo motivo, come per i sistemi di confinamento superficiale, la rispondenza di queste opere ai requisiti ambientali deve necessariamente basarsi su severe procedure di controllo sia delle metodologie costruttive, sia delle singole fasi costruttive, oltre ad una verifica globale basata su controlli finali post – operam.

Le barriere verticali possono essere realizzate con molteplici metodologie costruttive che devono essere selezionate sia in relazione alle esigenze di contenimento e alla durata prevista (provvisoria o permanente), sia sulla base di un corretto approccio geotecnico volto ad individuare la tecnologia più adatta ai terreni o alle rocce interessati dall’opera.

In Tabella 2 sono sintetizzate le principali tipologie di diaframmi finalizzati al contenimento fisico di terreni contaminati; sostanzialmente le tecnologie attualmente impiegate possono essere distinte in tre categorie:

- **scavo, asportazione e rimpiazzo del terreno con miscele impermeabilizzanti**: in questa tipologia costruttiva rientrano i diaframmi plastici;
- **spiazzamento del terreno ed immissione di miscele impermeabilizzanti o infissione di palancole o manufatti prefabbricati**: diaframmi sottili, palancole metalliche o diaframmi ad elementi prefabbricati infissi;
- **riduzione della permeabilità in sito**: iniezioni, jet grouting, colonne di terreno miscelato con additivi impermeabilizzanti o congelamento del terreno in sito.
<table>
<thead>
<tr>
<th>Tecnologia</th>
<th>Denominazione e convenzionale</th>
<th>Schema in pianta</th>
<th>Terreno</th>
<th>Materiale impermeabilizzante</th>
<th>Dimensioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scavo, asportazione del terreno e sostituzione con miscele impermeabilizzanti</td>
<td>Diaframma plastico monofase</td>
<td></td>
<td>Possibili problemi in presenza di inquinanti</td>
<td>Miscela cemento - bentonite</td>
<td>L = 0.4 – 1.6, L<sub>BB</sub> = 100 – 170</td>
</tr>
<tr>
<td>Scavo, asportazione del terreno e sostituzione con miscele impermeabilizzanti</td>
<td>Diaframma plastico bifase</td>
<td></td>
<td></td>
<td>Miscela cemento - bentonite</td>
<td>L = 0.4 – 1.6, L<sub>BB</sub> = 40 – 70</td>
</tr>
<tr>
<td>Scavo, asportazione del terreno e sostituzione con miscele impermeabilizzanti</td>
<td>Diaframma plastico composito</td>
<td></td>
<td></td>
<td>Miscela cemento - bentonite e geomembrana</td>
<td>L = 0.4 – 1.6, L<sub>BB</sub> = 20 – 50</td>
</tr>
<tr>
<td>Scavo, asportazione del terreno e sostituzione con miscele impermeabilizzanti</td>
<td>Diaframma formato da pali secanti</td>
<td></td>
<td>Nessuna restrizione nel caso di pali eseguiti con rivestimento</td>
<td>Miscela cemento - bentonite o calcestruzzo</td>
<td>L = 0.4 – 1.5, L<sub>BB</sub> = 20 – 40</td>
</tr>
<tr>
<td>Scavo, asportazione del terreno e sostituzione con miscele impermeabilizzanti</td>
<td>Diaframma sottile con miscela plastica</td>
<td></td>
<td></td>
<td>Miscela cemento - bentonite con inerti o additivi</td>
<td>L = 0.05 – 0.3, L<sub>BB</sub> = 10 – 35</td>
</tr>
<tr>
<td>Scavo, asportazione del terreno e sostituzione con miscele impermeabilizzanti</td>
<td>Diaframma sottile con geomembrana</td>
<td></td>
<td>Terreni dove è possibile infiggere elementi per battitura e/o vibrazione</td>
<td>Miscela cemento - bentonite e geomembrana</td>
<td>L > 0.002, L<sub>BB</sub> = 10 – 40</td>
</tr>
<tr>
<td>Scavo, asportazione del terreno e sostituzione con miscele impermeabilizzanti</td>
<td>Palancole</td>
<td></td>
<td></td>
<td>Acciaio</td>
<td>L = ~ 0.02, L<sub>BB</sub> = 20 – 30</td>
</tr>
<tr>
<td>Scavo, asportazione del terreno e sostituzione con miscele impermeabilizzanti</td>
<td>Diaframma ad elementi prefabbricati infissi</td>
<td></td>
<td></td>
<td>Calcestruzzo</td>
<td>L > 0.4, L<sub>BB</sub> = 15 – 25</td>
</tr>
<tr>
<td>Riduzione della permeabilità in sito</td>
<td>Iniezioni</td>
<td></td>
<td>Terreni iniettabili</td>
<td>Miscela cemento - bentonite, silicati, miscela cementizie con o senza filler</td>
<td>L = 1.5 – 2.5, L<sub>BB</sub> = 20 – 30</td>
</tr>
<tr>
<td>Riduzione della permeabilità in sito</td>
<td>Jet – grouting</td>
<td></td>
<td></td>
<td>Miscela bentonitiche con cemento</td>
<td>L = 0.4 – 2.5, L<sub>BB</sub> = 30 – 70</td>
</tr>
<tr>
<td>Riduzione della permeabilità in sito</td>
<td>Colonne di terreno miscelato in sito con additivi impermeabilizzanti</td>
<td></td>
<td>Possibile esecuzione anche in terreni fini</td>
<td>Calce, cemento, bentonite</td>
<td>L = 0.8 – 1.5, L<sub>BB</sub> = 30 – 60</td>
</tr>
<tr>
<td>Riduzione della permeabilità in sito</td>
<td>Congelamento</td>
<td></td>
<td></td>
<td>Azoto liquido con impianto di congelamento</td>
<td>L > 0.7, L<sub>BB</sub> = 50 – 100</td>
</tr>
</tbody>
</table>

Tabella 2: Tipologie di barriere verticali (Manassero, 1999). L: spessore; L_{BB}: massima profondità raggiungibile.
3.1.1 Diaframmi plastici

Per la realizzazione di un diaframma plastico si opera lo scavo di una trincea utilizzando un fluido, generalmente fanghi bentonitici o miscele cemento – bentonite, per il sostegno delle pareti.

Nel caso dei diaframmi monofase il fluido ha inoltre funzioni impermeabilizzanti e viene lasciato indurire all'interno della trincea stessa, mentre per i diaframmi bifase deve essere sostituito, a scavo ultimato, dalla miscela definitiva.

Oltre che sulla base della tipologia costruttiva, i diaframmi plastici possono esser classificati anche secondo i seguenti criteri:

- in funzione della stratigrafia del sottosuolo: vengono definiti immorsati se si inseriscono in un substrato impermeabile (naturale o artificiale), altrimenti sono detti sospesi;
- in funzione della struttura: i diaframmi in cemento – bentonite vengono definiti compositi se vi è inserita una geomembrana per incrementare le caratteristiche di impermeabilizzazione;
- in funzione della geometria: possono essere aperti, generalmente accoppiati ad un sistema di emungimento della falda, o chiusi, spesso in aggiunta ad una copertura superficiale impermeabile.

Dal punto di vista esecutivo, dopo avere eseguito le corre di guida, si procede all'esecuzione dello scavo a sezione rettangolare dei pannelli primari e successivamente dei pannelli secondari. La sovrapposizione longitudinale minima, dimensionata in relazione alla profondità da raggiungere e alla precisione delle attrezzature di scavo, varia da circa 0.2 m, per profondità inferiori a 15 m, fino a circa 0.5 m per profondità comprese tra 35 e 40 m.

È importante sottolineare che sia la deposizione temporanea sia la gestione finale del materiale scavato, generalmente contaminato, devono essere previste nel rispetto della normativa vigente (D.Lgs. n. 22 del 5 febbraio 1997). Analogamente deve essere predisposto un adeguato piano di trattamento dei fanghi utilizzati per il sostegno degli scavi che devono essere rigenerati, separando i materiali fini.

Per la realizzazione dello scavo possono essere impiegate attrezzature diversificate sulla base della natura dei terreni interessati e delle dimensioni del diaframma da realizzare. Le più comunemente adottate sono le benne mordenti, con azionamento della chiusura a fune o con comando idraulico, e le benne idrauliche; queste ultime possono essere montate su aste guidate oppure, per il raggiungimento di profondità maggiori e per un rapido posizionamento sulla verticale dello scavo, sospese da fune.
In terreni particolarmente tenaci e se le profondità lo consentono, così pure nel caso sia necessario immorsare il diaframma in roccia, si adottano tecniche di scavo che prevedono perforazioni secanti o tangenti (in genere con l’utilizzo di un rivestimento).

In casi particolari, qualora la natura dei materiali lo richieda e le profondità da raggiungere siano notevoli, vengono impiegate idrofrese.

![Figura 13 – Trincea per la realizzazione di un diaframma plastico](image)

I fanghi utilizzati per il sostegno degli scavi sono generalmente di natura bentonitica o polimerica. Poiché questi possono interferire con i sistemi di decontaminazione del terreno scavato, negli ultimi anni sono state sviluppate attrezzature che consentono di realizzare diaframmi compositi in continuo, fino a profondità di 10 – 15 m e spessori pari a 60 cm.

Queste macchine operano in successione il taglio del terreno, il riempimento dello scavo con una miscela plastica o calcestruzzo ed eventualmente la posa della geomembrana, senza utilizzare alcun fluido per il sostegno dello scavo.

Nei *diaframmi compositi* è previsto l’inserimento di una geomembrana realizzata generalmente in polietilene ad alta densità (HDPE). I teli, di spessore pari a 2 – 2.5 mm, sono dotati di speciali giunti a tenuta (Figura 15) e vengono posati con una tempistica coordinata con lo scavo dei pannelli, in modo tale da consentirne l’inserimento prima che la miscela, già presente nella trincea, solidifichi.
La posa della geomembrana è un’operazione particolarmente delicata, specialmente per grandi profondità, in quanto occorre garantire l’integrità dei teli e delle relative giunture.

Per diaframmi provvisori a bassa profondità (5 –10 m), possono essere realizzati diaframmi plastici (diaframmi terreno – bentonite) operando uno scavo in presenza di fanghi bentonitici con escavatori a braccio dotati di prolunghe; lo scavo viene successivamente riempito con una miscela realizzata fuori opera composta da terreno e bentonite (5 – 10 % in peso). Questa tipologia di diaframma, abbastanza comune negli Stati Uniti, è poco utilizzata in Italia.

3.1.2 Diaframmi sottili e palancole metalliche

Per la realizzazione di diaframmi sottili, anziché operare uno scavo, il terreno viene spiazzato infiggendo profili o scatolari in acciaio; la cavità così creata può essere riempita con bentonite granulare o miscele plastiche. I diaframmi sottili possono essere integrati con la posa di una geomembrana nella miscela plastica non indurita.

Tali tecniche sono evidentemente adottabili in terreni sabbiosi e limosi e consentono l’immorsamento in substrati impermeabili a basse profondità (10 m circa).

Tramite infissione si possono inoltre realizzare barriere con palancolati metallici o con elementi prefabbricati in calcestruzzo. Le palancole metalliche rappresentano una delle varianti più economiche per la realizzazione di una barriera verticale; tuttavia il loro impiego è limitato in quanto la debolezza idraulica delle giunture non garantisce un’impermeabilizzazione di lunga durata. E’ possibile ovviare parzialmente a tale inconveniente proteggendo i giunti con guaine in poliuretano (migliori dal punto di vista tecnico) o con bitume elastomero; durante la fase di installazione, per ridurre la frizione tra i ganci del giunto e la conseguente fusione della guaina protettiva, la si lubrifica con grasso.

E’ inoltre da evidenziare come le palancole metalliche non siano protette nei confronti degli attacchi ambientali, sebbene l’attacco della corrosione a contatto col terreno sia minimo, a meno di sostanze chimiche particolari presenti nel terreno stesso o nelle acque di falda). Si sono stimati indici massimi di corrosione (in ambiente aereo) dell’ordine di 0.1 mm in 10 anni. Tuttavia è possibile proteggere le palancole con sistemi attivi (protezione catodica) o passivi (verniciatura con resine epossidiche, se compatibili con l’ambiente circostante).

3.1.3 Miglioramento dei terreni

È possibile realizzare barriere fisiche verticali riducendo la permeabilità del terreno con tecniche quali il jet – grouting, le iniezioni, la miscelazione in sito con additivi impermeabilizzanti e il congelamento del terreno in sito.
Il *jet-grouting* consiste nella disgregazione e nella successiva miscelazione del terreno con leganti, mediante getti ad alta pressione. Questa tecnica, che prevede diverse tipologie di trattamento, consente di operare in un’ampia gamma di terreni ed offre una notevole flessibilità di applicazioni.

Questa tecnica si utilizza soprattutto in terreni facilmente disgregabili (sabbie, ghiaie e limi) in quanto essa si basa sull’erosione idraulica del terreno iniettando, attraverso un’apposita sonda, una miscela confezionata con cemento (rapporto cemento/acqua pari a 0,5 ÷ 1,5) ed eventualmente bentonite, al fine di ridurre la rigidità strutturale della miscela.

Se la sonda di iniezione è mantenuta in rotazione durante l’estrazione, si eseguono trattamenti colonnari mentre, inibendo la rotazione, si eseguono pannelli sottili (spessore 0,1 ÷ 0,3 m).

![Figura 14 – Pannello sottile realizzato mediante Jet Grouting](image)

I coefficienti di permeabilità raggiungibili dipendono dalle caratteristiche del materiale iniettato e dal tipo di iniezione (colonnare o a pannelli) e generalmente si attestano su valori prossimi a $10^{-7} – 10^{-8}$ m/s.

Le tecniche di *iniezione* utilizzate per il miglioramento dei terreni si dividono in due tipologie: iniezione per fratturazione idraulica e iniezione per permeazione.

Nel primo caso è prevista l’esecuzione di perforazioni con la posa di tubi valvolati che consentono l’iniezione, in pressione e in più fasi, di vari tipi di fluidi tra cui miscele cementizie, miscele cemento – bentonite e soluzioni colloidali. Questa tecnica presenta diversi svantaggi tra cui l’utilizzo di additivi e composti chimici altamente tossici che possono anche interagire con gli inquinanti presenti nel terreno. Inoltre, a fronte di costi generalmente elevati e di procedure complesse, si ottengono riduzioni di conducibilità idraulica limitate a 2 – 3 ordini di grandezza rispetto al terreno originario.
L’iniezione per permeazione è una tecnica meno invasiva della precedente ed è condotta mediante iniezione di un fluido impermeabile viscoso attraverso fori di sondaggio ad una pressione inferiore a quella di rottura del terreno.

I vuoti intergranulari naturali esistenti vengono riempiti gradatamente e, pertanto, il metodo si applica con successo solo in suoli permeabili a granulometria sabbiosa e/o ghiaiosa. Il grado di continuità della barriera risulta tuttavia piuttosto inaffidabile ed il suo grado di conducibilità idraulica alquanto variabile. Non si raggiungono, in genere, valori di conducibilità idraulica inferiori a 10^{-6} – 10^{-7} m/s, condizione che comporta l’adozione di spessori elevati, con relativo incremento dei costi.

La *miscelazione del terreno in sito con leganti* (cemento, calce) consiste nell’infissione nel terreno di un sistema multiplo di alberi rotanti (generalmente tre), muniti di eliche miscelatrici, i quali determinano il rimescolamento del terreno. Gli alberi rotanti sono cavi all’estremità inferiore facilitando l’iniezione nel sottosuolo di una miscela fangosa a base di bentonite/acqua (1%) oppure della miscela bentonite/acqua/cemento. Ripetendo l’operazione per un numero di volte sufficientemente alto si ottiene una barriera continua formata da una serie di colonne dello spessore di 50-90 cm. Il coefficiente di permeabilità della barriera risultante è influenzato dal tipo di terreno presente.

I vantaggi di questo tipo di barriere risiedono nei costi contenuti, nell’assenza di operazioni aggiuntive di trattamento e smaltimento dei materiali contaminati (non si effettuano scavi) e nell’uso di quantitativi limitati di bentonite rispetto ai diaframmi plastici convenzionali;

Recentemente è stata messa a punto una metodologia (Turbojet®) che permette di ottenere colonne di terreno consolidato o gruppi di colonne in maniera veloce e con elevati standard qualitativi. Il sistema è applicabile ad una ampia gamma di terreni, mantenendo un’ottima qualità di miscelazione e un controllo geometrico dei risultati.

La tecnologia Turbojet® consiste nell’iniezione nel terreno di prefissati volumi di miscela cementizia e nella contemporanea miscelazione della stessa con il terreno in situ. Essa coniuga i vantaggi delle tecnologie jetting, quali flessibilità e diversi campi di applicazione, e quelli propri delle tecnologie di miscelazione meccanica ovvero qualità della miscelazione, garanzia del diametro e della continuità delle colonne.

Il controllo di qualità del prodotto, in fase di esecuzione del trattamento, è garantito da un monitoraggio in tempo reale delle quantità di miscela immessa, dei parametri di trattamento e della profondità raggiunta.

Il congelamento del terreno in sito è una tecnica innovativa di contenimento laterale e di fondo dei contaminanti. Per la realizzazione viene installato un sistema di tubazioni refrigeranti in acciaio incamiciate ed inclinate in modo da formare una struttura a “V” distanziata di circa 2 m. Una seconda serie di tubi, sempre a struttura a “V”, viene affiancata alla precedente, ad una distanza di 6-9 m circa. Ciascun tubo di refrigerazione è realizzato con doppia camicia concentrica di rivestimento in acciaio.

Il fluido refrigerante (salamoia, ammoniaca, azoto liquido) circola, ad una temperatura di circa –300 °C, nello spazio compresso tra le due camicie e viene poi pompato in superficie attraverso la camicia interna. La doppia struttura a V favorisce
il congelamento del terreno compreso tra le tubazioni, costituendo quindi una barriera criogenica dello spessore di 12 – 15 m. Dopo il congelamento si mantiene un flusso minimo di refrigerante.

Poiché la barriera impermeabilizzante si forma per effetto del congelamento della umidità presente nel sottosuolo, in alcuni casi si procede alla immissione nel terreno di quantità aggiuntive di acqua mediante tubazioni forate.

I lunghi tempi di realizzazione, in funzione della granulometria del terreno, gli elevati costi di esercizio e le notevoli difficoltà tecniche, rendono questa tecnica di scarso impiego anche per interventi a carattere temporaneo.

3.1.4 Caratteristiche prestazionali delle barriere verticali

Nella tabella seguente vengono sintetizzate le caratteristiche prestazionali, in termini di permeabilità globale, relative alle tipologie di barriere verticali maggiormente impiegate per la messa in sicurezza di siti contaminati e viene fornita una stima orientativa dei relativi costi.

<table>
<thead>
<tr>
<th>Tipologia diaframma</th>
<th>k (m/s)</th>
<th>Costo indicativo (euro/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaframmi plastici (cemento – bentonite)</td>
<td>$10^{-9} – 10^{-10}$</td>
<td>50 – 80</td>
</tr>
<tr>
<td>Diaframmi plastici (terreno – bentonite)</td>
<td>$10^{-9} – 10^{-10}$</td>
<td>40 – 80</td>
</tr>
<tr>
<td>Diaframmi plastici composti</td>
<td>$10^{-10} – 10^{-12}$</td>
<td>70 – 150</td>
</tr>
<tr>
<td>Diaframmi in calcestruzzo</td>
<td>$10^{-8} – 10^{-9}$</td>
<td>140 – 220</td>
</tr>
<tr>
<td>Diaframmi plastici sottili</td>
<td>$10^{-7} – 10^{-8}$</td>
<td>40 – 60</td>
</tr>
<tr>
<td>Jet grouting</td>
<td>$10^{-7} – 10^{-9}$</td>
<td>80 – 120</td>
</tr>
<tr>
<td>Palancole metalliche</td>
<td>$10^{-6} – 10^{-8}$</td>
<td>40 – 70</td>
</tr>
<tr>
<td>Barriere verticali iniettate</td>
<td>$10^{-6} – 10^{-8}$</td>
<td>50 – 150</td>
</tr>
</tbody>
</table>

3.2 Verifica degli assunti progettuali

Il progetto di un sistema di confinamento verticale, oltre descrivere nel dettaglio le specifiche costruttive (materiali impiegati, tecnologie adottate), deve anche riportare gli elementi conoscitivi utili a giustificare le scelte progettuali operate; la verifica di questi elementi costituisce la prima fase della valutazione dell’efficienza del sistema stesso.

Poiché l’obiettivo primario di una barriera verticale è quello di provvedere all’isolamento idraulico del materiale da essa confinato, limitando il flusso idrico verso valle, gli aspetti progettuali da verificare sono i seguenti:

- caratterizzazione geologico - tecnica;
- caratterizzazione idrogeologica del sito;
• stato di contaminazione;
• caratteristiche tecniche della barriera verticale.

Dal momento che alcuni di questi elementi sono stati descritti nel paragrafo 2.2 relativo alla valutazione delle coperture superficiali, sono di seguito riportati i criteri progettuali specifici di un sistema di confinamento verticale, rimandando al suddetto paragrafo per gli aspetti di carattere generale.

3.2.1 Caratterizzazione geologico – tecnica

La tipologia di barriera adottata e le relative modalità esecutive devono essere congruenti con le proprietà geotecniche dei terreni e delle rocce interessate dall’opera.

Lo studio geologico a supporto della progettazione deve ricostruire la natura, l’assetto e le caratteristiche geotecniche dei terreni che interagiscono con la copertura.

A questo scopo, le informazioni desunte dalla letteratura, valide per un inquadramento geologico generale, devono essere integrate mediante indagini dirette (sondaggi) e indirette (metodi geofisici e prove penetrometriche).

Il numero e la profondità dei sondaggi devono essere definiti in relazione alla situazione geologica del sito; le stratigrafie dei singoli sondaggi, eventualmente correlate lungo sezioni opportunamente orientate, devono essere riportate nel progetto unitamente ad una carta di ubicazione.

I metodi di indagine indiretta devono essere scelti in base alla situazione geologica e allo specifico campo di applicabilità della prova. In ogni caso, le prospezioni indirette devono essere tarate con prospezioni dirette.

3.2.2 Caratterizzazione idrogeologica del sito

Durante la fase progettuale devono essere investigate le caratteristiche idrogeologiche del sito in cui verrà realizzata la barriera, al fine di definire l’assetto stratigrafico del sottosuolo, le caratteristiche idrogeologiche di ciascun orizzonte interessato dall’intervento e le modalità di circolazione idrica sotterranea.

La caratterizzazione idrogeologica deve comprendere almeno i seguenti aspetti:
• ricostruzione litostratigrafica del sottosuolo attraverso l’applicazione di metodi di indagine diretti, eventualmente supportati da metodi indiretti (geofisici);
• parametrizzazione idrogeologica (porosità, conduttività idraulica, trasmissività);
• studio delle condizioni di flusso idrico sotterraneo (direzione di flusso, oscillazione dei livelli piezometrici, gradienti idrici, bilancio idrico).
Linee guida per la verifica ed il collaudo delle barriere impermeabili per la messa in sicurezza di siti contaminati

Un aspetto fondamentale è la ricostruzione della profondità, della geometria e della conducibilità idraulica della barriera impermeabile naturale in cui avviene l’immorsamento della barriera.

Nelle situazioni particolarmente complesse dal punto di vista idrogeologico (presenza di più livelli acquiferi sovrapposti, incidenza di sollecitazioni quali prelievi pubblici e privati, irrigazioni, manufatti interferenti con la falda, ecc.) può essere opportuna l’implementazione di un modello numerico, allo scopo di migliorare la comprensione delle condizioni di flusso (piezometria dinamica, drenanza tra falde sovrapposte) e di simulare l’evoluzione del sistema idrogeologico in presenza della barriera.

3.2.3 Stato di contaminazione

Concentrazione, estensione areale e proprietà chimico-fisiche delle sostanze inquinanti sono dati necessari per un corretto approccio al problema. Per la valutazione di questi parametri devono essere effettuati campionamenti di acque sotterranee e dei terreni, seguiti da analisi in laboratori certificati.

Per quanto riguarda i criteri di campionamento dei terreni si rimanda al paragrafo 2.2.4, mentre per le acque sotterranee esistono diversi tipi di approccio a seconda della complessità del sito e del livello di conoscenza dello stesso. In generale la frequenza di campionamento deve essere funzione delle dimensioni del sito da investigare.

Nel caso di un sito di dimensioni limitate si può optare per un campionamento mirato, cioè riguardante solo quelle aree ritenute probabile sede di contaminazione. Successivamente si può infittire ed eventualmente ampliare la griglia di campionamento per delimitare con maggior precisione l’area contaminata.

Per siti estesi si utilizzano maglie di campionamento regolari, dimensionate a seconda della grandezza dell’area, come prescritto dal D.M. 471/99:
- $< 50000 \text{ m}^2$: almeno 4 punti di prelievo;
- $50000 \div 100000 \text{ m}^2$: almeno 6 punti di prelievo;
- $100000 \div 250000 \text{ m}^2$: almeno 8 punti di prelievo;
- $> 250000 \text{ m}^2$: almeno 1 punto di prelievo ogni 25000 m2.

Si sottolinea che la griglia di campionamento dovrà eventualmente essere infittita ed opportunamente ampliata se la distribuzione della contaminazione è particolarmente irregolare o se si vogliono implementare modelli numerici di simulazione e previsione del flusso idrico e del trasporto della contaminazione.

3.2.4 Caratteristiche tecniche della barriera verticale

Durante la fase di verifica del progetto, devono essere attentamente valutate le caratteristiche tecniche che maggiormente influenzano l’efficienza del sistema di
confinamento; le più importanti riguardano la tipologia di materiali adottati e il dimensionamento del sistema (spessore della barriera, profondità dell’immorsamento, conducibilità idraulica).

3.2.4.1 Tipologia dei materiali adottati

La scelta dei materiali costituenti la barriera deve tenere conto della possibile reattività chimica tra i materiali stessi e l’ambiente in cui la barriera viene realizzata. Ad esempio in siti caratterizzati da inquinamento inorganico in cui sussiste il rischio di scambio ioniico, devono essere utilizzate bentoniti speciali, peraltro diffusamente commercializzate, in quanto l’instaurarsi di questo processo riduce sensibilmente la capacità rigonfiante della bentonite.

Così pure, in presenza di inquinamento organico alla bentonite sodica sembra preferibile la bentonite calcica che, pur non consentendo di raggiungere livelli di permeabilità molto bassi, non presenta incrementi di permeabilità a lungo termine (per questo motivo è sempre consigliabile l’impiego di diaframmi compositi).

Le geomembrane in HDPE, sebbene possiedano notevoli caratteristiche di durevolezza e resistenza in presenza di svariati tipi di inquinanti, si comportano in modo insoddisfacente se messe a contatto con elevate concentrazioni di idrocarburi policiclici aromatici. In siti caratterizzati da questo tipo di contaminazione è quindi sconsigliabile l’utilizzo di diaframmi sottili in quanto lo spessore delle pareti non è sufficiente a proteggere la geomembrana da una degradazione a lungo termine, con conseguente danno per l’efficienza della barriera.

La capacità del fango di sostenere la parete dello scavo, evitando sedimenti locali, è un altro aspetto critico soprattutto per diaframmi plastici privi di geomembrana, dal momento che tali sedimenti possono incrementare notevolmente la conducibilità idraulica. Tale capacità è funzione del comportamento reologico che deve essere indagato, attraverso le prove e le analisi descritte nel capitolo seguente, in rapporto alle specifiche condizioni ambientali.

Per una valutazione del tipo di giunto tra i pannelli della geomembrana si può basare su valutazioni relative alla resistenza meccanica, la tenuta, la facilità di esecuzione in opera e la possibilità di effettuare controlli sull’integrità del giunto stesso.

Figura 15: Giunture dei teli in HDPE per la realizzazione di diaframmi plastici compositi

In riferimento alla Figura 15 che presenta alcuni dei tipi di giunture maggiormente commercializzate, i giunti indicati con “a” e “b”, di limitata
rigidità trasversale, possono essere effettivamente utilizzati solo per diaframmi poco profondi poiché soggetti a rotture durante la fase di posa. I giunti che contengono un cordone bentonitico ("b", "c", "d") al fine di aumentare la tenuta impermeabile, sono di difficile installazione a causa della posizione che può assumere il cordone durante la messa in opera, mentre i giunti privi di cavità interna (tutti tranne “f”) limitano le procedure di controllo di integrità.

3.2.4.2 Dimensionamento del sistema

Lo spessore e la conducibilità idraulica della barriera devono rispettare alcuni criteri che possono essere derivati dal D.Lgs. n. 36 del 13 gennaio 2003 “Attuazione della direttiva 1999/31/CE relativa alle discariche di rifiuti”:

- spessore minimo: 0.5 m;
- tempo di attraversamento minimo: equivalente al tempo di attraversamento di una barriera con spessore pari a 5 m e conducibilità idraulica pari a 10^{-9} m/s nel caso dell’adozione di una equivalenza ad una discarica per rifiuti pericolosi (5 $\cdot 10^9$ secondi corrispondenti a 158.5 anni circa14);
- portata unitaria filtrante dal sistema, sotto gradiente idraulico unitario: 1.71 ÷ 6.83 l/m2/anno (U.S. EPA, 1984 e 1988);
- profondità di immorsamento: deve essere dimensionata sulla base del tempo di attraversamento minimo previsto, nel caso di equivalenza con il confinamento di rifiuti pericolosi, corrispondente ad uno spessore di 5 m e conducibilità idraulica pari a 10^{-9} m/s.

![Diagramma di un diaframma verticale](image)

Figura 16 – Parametri per il dimensionamento di un diaframma verticale. L’area contaminata è localizzata nella parte sinistra della figura. In condizioni ordinarie il livello di falda è inferiore nella parte sinistra, in seguito alla presenza di sistemi di aggottamento, ma in caso di disfunzione del sistema si può verificare la situazione rappresentata in figura, che viene assunta in sede progettuale a scopo cautelativo.

14 Applicando un’equivalenza ad una discarica di rifiuti non pericolosi, il tempo di attraversamento si riduce a 10^9 s corrispondenti a 31.7 anni circa.
Per una verifica dello spessore della barriera verticale si può fare riferimento alle seguenti relazioni:

\[b = \frac{k_d \Delta H}{n_d} t_s \]

dove:
- \(b \): spessore del diaframma [m];
- \(k_d \): conducibilità idraulica del diaframma [m/s];
- \(\Delta H \): differenza di carico idraulico tra la zona interna al diaframma e quella esterna [m];
- \(n_d \): porosità efficace del diaframma [-];
- \(t_s \): tempo di attraversamento [s].

Nota la differenza di carico idraulico, la conducibilità idraulica del diaframma e la relativa porosità, e fissato un tempo di attraversamento pari a \(5 \cdot 10^9 \) s, lo spessore del diaframma come da progetto deve essere maggiore o uguale al valore \(b \) calcolato.

La profondità dell’immorsamento \(c \) può essere valutata utilizzando la seguente relazione:

\[c = \frac{1}{2} \left[t_s \cdot \frac{k_s \Delta H}{b n_s} - b \right] \]

dove:
- \(k_s \): conducibilità idraulica del substrato [m/s];
- \(n_s \): porosità efficace del substrato [-].

Come per la verifica dello spessore della barriera, noti i parametri di ingresso e fissato un tempo di attraversamento pari a \(5 \cdot 10^9 \) s, la profondità dell’immorsamento del diaframma deve essere maggiore o uguale a quella calcolata.

Per la verifica della differenza di carico di progetto (\(\Delta H \)) tra l’interno e l’esterno del diaframma, si può utilizzare la seguente relazione:
\[\Delta H = -\ln \frac{C}{C_0} \left(\frac{n_d D}{k_d} \right) \]
dove:
- \(C \): concentrazione rilevata ad un tempo \(t \) [mg/l];
- \(C_0 \): concentrazione iniziale [mg/l];
- \(D \): coefficiente di diffusione [m\(^2\)/s].

Il valore calcolato dev’essere minore o uguale a quello di progetto.

In questo modo è possibile ostacolare anche il fenomeno della diffusione che potrebbe comportare la fuoriuscita di contaminanti, seppure in concentrazioni ridotte.

3.3 Controlli in fase di scelta e qualificazione del materiale

I diaframmi plastici in cemento – bentonite, eventualmente con geomembrana in HDPE, rappresentano la tecnica utilizzata più di frequente per il confinamento verticale di terreni contaminati. I controlli sui materiali utilizzati per questi diaframmi, descritti nel seguito e sintetizzati in Tabella 3, hanno la duplice funzione di verificare la rispondenza delle caratteristiche dei materiali alle specifiche tecniche e di misurarne le prestazioni in termini di resistenza chimica, di impermeabilità e di deformabilità.

<table>
<thead>
<tr>
<th>Materiali</th>
<th>Tipo di controllo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materiali di base della miscela: cemento, bentonite, eventuale additivo</td>
<td>Rispondenza dei materiali alle specifiche tecniche.</td>
</tr>
<tr>
<td>Cemento: composizione chimica, tipo (Altoforno, Pozzolanico, ecc.), finezza.</td>
<td></td>
</tr>
<tr>
<td>Bentonite: composizione chimica e mineralogica, parametri indice del materiale tal quale (rigonfiamento, assorbimento) o sul fango di bentonite (resa volumetrica e viscosità riferite ad un certo dosaggio)</td>
<td></td>
</tr>
<tr>
<td>Miscela plastica</td>
<td>Prove di qualificazione (per ciascuna miscela provata)</td>
</tr>
<tr>
<td>Miscela fresca: peso specifico, resa volumetrica, viscosità.</td>
<td></td>
</tr>
<tr>
<td>Dopo maturazione (in genere di 7, 14, 28 giorni): prove di permeabilità, resistenza, deformabilità e compatibilità chimica.</td>
<td></td>
</tr>
<tr>
<td>Geomembrana HDPE</td>
<td>Rispondenza del materiale alle caratteristiche tecniche (spessore, resistenza, conducibilità idraulica, deformabilità, densità, resistenza chimica)</td>
</tr>
</tbody>
</table>
Tabella 3: Diaframmi plastici: controlli in fase di scelta dei materiali.

Occorre inoltre tenere in considerazione la compatibilità chimica dei materiali utilizzati con la composizione chimica delle acque sotterranee; alcuni elementi possono infatti influenzare notevolmente sia il tempo di presa delle miscele impermeabilizzanti sia la durata complessiva delle opere (Tabella 4).

Tabella 4: compatibilità chimica tra i prodotti utilizzabili per la realizzazione di diaframmi e impermeabilizzazioni e le caratteristiche idrochimiche delle acque sotterranee (Chiesa, 1988)

<table>
<thead>
<tr>
<th>Composizione chimica</th>
<th>Bitume</th>
<th>Cemento</th>
<th>Bentonite</th>
<th>Cemento argilla</th>
<th>Silicati</th>
<th>Polimeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acque acide</td>
<td>- a</td>
<td>1d</td>
<td>- c</td>
<td>- c</td>
<td>3a</td>
<td>2c</td>
</tr>
<tr>
<td>Acque alcaline</td>
<td>- a</td>
<td>1d</td>
<td>- c</td>
<td>- d</td>
<td>2c</td>
<td>3d</td>
</tr>
<tr>
<td>Metalli pesanti</td>
<td>- 1a</td>
<td>- d</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Solventi</td>
<td>- d</td>
<td>2c</td>
<td>- d</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Composti organici

Alcool-glicol	- a	- d	- d	- d	1a	1d	3b	3a	1	1a	1a
Aldeidi chetoni	- d¹	-	- d	-	1a	- a	3a	1a	-	1a	1a
Idrocarburi alifatici e aromatici	- d	2a	- d	-	1d	1a	2d	1a	2a	1d	1d
Ammine e ammidi	-	-	-	-	3a	3d	3b	3a	1a	1a	3a
Idrocarburi clorurati	- d	2d	-	-	1a	1a	1a	1a	1a	1a	1a
Eteri – eossidi	-	-	-	-	1a	1a	1a	1a	1a	- d	1a
Eterocicli	-	-	- d	-	1d	1a	1a	1a	1a	1a	1a
Nitriti	-	-	-	-	1a	3	-	1a	1a	1a	1a
Acidi organici e cloruri	- a	1d	- d	- d	1a	2a	3a	2a	1a	- d	1a
Sali organici di metalli	-	-	-	-	1a	3a	-	-	1a	1a	3
Fenoli	- d	- d	- d	- d	1a	1a	2a	2c	1a	1a	1
Eteri organici	-	-	-	-	-	-	-	-	-	-	1d

Composti inorganici

Sali di metalli pesanti	- d	2c	- d	2c	3a	2	-	-	- a	3	3
Acidi inorganici	- a	- d	- c	- c	3a	2c	2a	2c	1d	1a	1[°]
Basi inorganiche	- a	- a	- c	- d	2c	3d	3d	- d	2c	- a	1d
Sali inorganici	- d	2c	2d	- d²	3d	3d³	- a	- d	- a	- a	3a
Linee guida per la verifica ed il collaudo delle barriere impermeabili per la messa in sicurezza di siti contaminati

(1) eccetto aldeide; (2) eccetto solfati; (3) eccetto sali di metalli pesanti (2d); - mancanza di dati.

Effetto sulla durata: a: nessun effetto; b: aumento; c: lenta diminuzione; d: rapida diminuzione.

3.3.1 Materiali di base della miscela

3.3.1.1 Cemento

I cementi di cui all'art. 1 lettere A e C della legge 26 maggio 1965 n. 595, cioè i cementi normali e ad alta resistenza Portland, pozzolanico e di alto forno, devono possedere una certificazione conforme alle procedure degli allegati 1, 2 e 3 del D.M. 12 luglio 1999, n. 314.

Per una qualifica del cemento utilizzato per la composizione della miscela devono essere specificate nel progetto:

- composizione chimica;
- tipo;
- finezza.

Per la definizione di questi parametri si può fare riferimento alla norma UNI EN 197-1.

3.3.1.2 Bentonite

Le caratteristiche della bentonite utilizzata per la preparazione della miscela devono essere specificate mediante le seguenti prove:

- Contenuto in montmorillonite
- Indice di rigonfiamento (ASTM D5890)
- Massa areica (prEN 14196)

3.3.2 Miscela plastica

La composizione della miscela deve essere studiata o progettata in relazione alle prestazioni richieste di conducibilità idraulica, plasticità, resistenza a medio e lungo termine, compatibilità chimica, alle proprietà richieste in fase di getto (tempo di presa) e alle tempistiche di scavo e di posa della geomembrana. Essa deve quindi

possedere caratteristiche tali da poter soddisfare contemporaneamente le seguenti esigenze:

- elevata resistenza all’attacco chimico;
- bassa conducibilità idraulica:

 conducibilità idraulica < 10^{-8} m/s a medio termine;

 conducibilità idraulica < 10^{-9} m/s a lungo termine;
- elevata deformabilità: capacità di adattarsi e seguire le eventuali deformazioni del terreno.

Per una valutazione di massima delle proprietà della miscela impiegata per la realizzazione di un diaframma occorre considerare i rapporti tra i diversi componenti, la cui variazione influisce in modo determinante sulle prestazioni, in particolare sulla conducibilità idraulica (Figura 17) sulla deformabilità. Tali rapporti devono pertanto essere specificati chiaramente dal progetto.

In linea di massima il campo di composizione ottimale della miscela impermeabilizzante è compreso tra le seguenti percentuali in peso (Jefferis, 1981):

- acqua: 68 – 88 %;
- bentonite: 3 – 7 %;
- cemento: 8 – 25 %.

Figura 17 - Influenza dei componenti di base sulla conducibilità idraulica di miscele cemento bentonite (Fratalocchi, 1999). Si noti l’aumento di conducibilità idraulica in funzione del contenuto in cemento della miscela.

Quantitativi maggiori di bentonite causano una maggiore deformabilità (plasticità) della miscela mentre la percentuale di cemento ne influenza la resistenza meccanica e la conducibilità idraulica.
Per una definizione quantitativa delle caratteristiche della miscela devono essere eseguite prove reologiche, di presa, di resistenza e di conducibilità idraulica sia su campioni di miscela fresca sia dopo maturazione per 7, 14, 28, 60 giorni.

Le prove, eseguite variando le percentuali relative delle diverse componenti e per tempi successivi di maturazione, devono definire i seguenti parametri:

- decantazione;
- peso specifico;
- resistenza a compressione non confinata;
- deformazione a rottura;
- conducibilità idraulica;
- viscosità;
- ritiro volumetrico.

Poiché un altro importante fattore da considerare è la compatibilità chimica con gli inquinanti presenti nel sito in cui verrà realizzato il diaframma, è opportuno eseguire ulteriori prove per poter valutare il comportamento delle miscele al variare dei liquidi con le quali possono venire a contatto e/o confezionate.

A questo scopo occorre preparare tre serie di provini della miscela:

a) campioni confezionati con acqua distillata e conservati in acqua distillata

b) campioni confezionati con acqua distillata e conservati in acqua di falda

c) campioni confezionati con acqua di falda e conservati in acqua di falda

Le acque di falda devono essere prelevate direttamente dal sito in esame.

I provini una volta sottoposti a prove di qualificazione possono fornire indicazioni sulle variazioni delle proprietà in relazione al tipo di fluido con cui sono state confezionate e conservate i diversi tipi di miscela.

Le prove devono essere condotte tenendo conto anche delle seguenti considerazioni:

- la conducibilità idraulica delle miscele acqua-cemento-bentonite (ternarie) confezionate con cemento di altoforno diminuisce all’aumentare del tempo di maturazione;
- la conducibilità idraulica diminuisce all’aumentare della percentuale di solidi contenuti nella miscela;
- la riduzione di conducibilità idraulica nel tempo è direttamente proporzionale al contenuto di cemento nella miscela;

Sulla base dei risultati delle prove effettuate deve essere scelta la miscela che ha fornito la migliori prestazioni in termini di conducibilità idraulica, resistenza a
compressione e deformazione a rottura. Le caratteristiche della miscela dopo il confezionamento generalmente sono contenute entro i seguenti campi di variazione:

- Densità: 1150 ÷ 1200 kg/m³;
- Viscosità Marsh: 38 ÷ 60 secondi;
- Resa volumetrica: > 98 %

3.3.3 Geomembrane in HDPE

Per le geomembrane le operazioni di controllo devono verificare la rispondenza del materiale alle specifiche tecniche fornite dal produttore.

Le caratteristiche tecniche delle membrane in polietilene ad alta densità (HDPE), preferibili a quelle in PVC e CSPE per le loro caratteristiche di durabilità, impermeabilità e compatibilità chimica, sono fissate dalla norma UNI 8898-6, che stabilisce i requisiti minimi per le geomembrane utilizzate nei sistemi barriera.

Le specifiche tecniche sono le seguenti:

<table>
<thead>
<tr>
<th>Caratteristiche tecniche</th>
<th>Unità di misura</th>
<th>Valore</th>
<th>Metodologia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spessore</td>
<td>mm</td>
<td>2</td>
<td>UNI EN 1849-2; ASTM D 5199</td>
</tr>
<tr>
<td>Massa volumica</td>
<td>g/cm³</td>
<td>> 0.94</td>
<td>UNI 7092</td>
</tr>
<tr>
<td>Contenuto in nerofumo</td>
<td>%</td>
<td>> 2</td>
<td>UNI 9556</td>
</tr>
<tr>
<td>Resistenza a rottura</td>
<td>Mpa</td>
<td>> 26</td>
<td></td>
</tr>
<tr>
<td>Allungamento a rottura</td>
<td>%</td>
<td>> 700</td>
<td></td>
</tr>
<tr>
<td>Resistenza allo snervamento</td>
<td>Mpa</td>
<td>> 15</td>
<td>UNI EN 12311; ASTM D 638</td>
</tr>
<tr>
<td>Allungamento a snervamento</td>
<td>%</td>
<td>> 9</td>
<td></td>
</tr>
<tr>
<td>Resistenza al punzonamento statico (CBR)</td>
<td>N</td>
<td>> 5000</td>
<td>UNI EN ISO 12236</td>
</tr>
<tr>
<td>Resistenza a punzonamento dinamico</td>
<td>Classe</td>
<td>PD4</td>
<td>UNI EN 12691</td>
</tr>
<tr>
<td>Resistenza a lacerazione</td>
<td>N/mm</td>
<td>> 130</td>
<td>ASTM D751; UNI EN 12310</td>
</tr>
<tr>
<td>Stress cracking</td>
<td>Ore</td>
<td>> 1000</td>
<td>ASTM D 1693</td>
</tr>
<tr>
<td>Stabilità dimensionale a caldo</td>
<td>%</td>
<td>< 2</td>
<td>UNI EN 1107</td>
</tr>
<tr>
<td>Permeabilità al vapor d’acqua</td>
<td>g/m²/24h</td>
<td>< 723.6</td>
<td>UNI 8202/23; ASTM E 96</td>
</tr>
</tbody>
</table>
Per la verifica delle caratteristiche della geomembrana, dovrà essere richiesta la documentazione contenente le certificazioni del produttore, le specifiche tecniche del materiale, i risultati di eventuali controlli qualità e il certificato di prova di ciascun rotolo.

3.4 Controlli in corso d'opera sui singoli materiali, sul confezionamento e sulla posa

I controlli in corso d'opera, sintetizzati in Tabella 5, sono finalizzati a verificare la rispondenza dei materiali alle specifiche tecniche, la correttezza nelle procedure di costruzione e le caratteristiche dimensionali del diaframma.

Tabella 5: Diaframmi plastici: controlli in corso d’opera.

<table>
<thead>
<tr>
<th>Materiali</th>
<th>Tipo di controllo</th>
</tr>
</thead>
</table>
| Materiali di base della miscela: cemento, bentonite, eventuale additivo | Verifica delle specifiche tecniche
Prove di laboratorio su campioni prelevati in sito |
| Miscela plastica confezionata | Prelievo di campioni all'impianto di miscelazione e nello scavo da sottoporre a prove rapide in sito (viscosità, densità, ritiro volumetrico).
Prove di laboratorio a maturazione: conducibilità idraulica, resistenza e deformabilità. |
| Geomembrana HDPE | Rispondenza del materiale alle caratteristiche tecniche (spessore, resistenza, conducibilità idraulica, deformabilità, densità, resistenza chimica)
Prove su campioni prelevati in sito.
Verifica delle saldature. |
| Diaframma | Verifica dimensionale dello scavo (verticalità, profondità) ad ogni pannello.
Verifica della posa del telo in HDPE (raggiungimento del fondo scavo, posizioni rispetto alle pareti) |

Per quanto riguarda la verifica delle modalità esecutive, è suggerita la costruzione di un campo di prova tecnologico costituito da un tratto di barriera da eseguire fuori opera.
Inoltre si sottolinea come le prove di laboratorio su campioni prelevati in corso d’opera non siano esaustive del comportamento della miscela plastica e quindi si rende necessaria l’esecuzione di prove in sito.

3.4.1 Controlli sui materiali di base della miscela

Durante la fase di getto, i materiali costituenti la miscela (acqua, cemento, bentonite) devono essere campionati per essere sottoposti alle seguenti prove:

<table>
<thead>
<tr>
<th>Componenti</th>
<th>Tipo di prova</th>
<th>Numero</th>
<th>Metodologia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acqua</td>
<td>pH</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>conducibilità elettrica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>durezza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemento</td>
<td>contenuto in scorie sabbiose</td>
<td>1</td>
<td>setaccio 0.06</td>
</tr>
<tr>
<td></td>
<td>finezza</td>
<td></td>
<td>UNI EN 196 – 6<sup>16</sup>;</td>
</tr>
<tr>
<td></td>
<td>limite di liquidità</td>
<td></td>
<td>ASTM D4318, UNI 10014</td>
</tr>
<tr>
<td>Bentonite</td>
<td>resa del filtrato</td>
<td>5</td>
<td>API RB 13B</td>
</tr>
<tr>
<td></td>
<td>Decantazione</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>viscosità Marsh</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>limite di flusso</td>
<td>1</td>
<td>ASTM D5891, API 13A</td>
</tr>
</tbody>
</table>

Il numero di prove è riferito ad ogni 200 – 500 m³ di miscela prodotta, a seconda delle dimensioni del diaframma, con una frequenza minima di una volta ogni 24 ore.

Il prelievo di campioni di cemento da sottoporre alle prove deve essere conforme alla norma UNI EN 196 – 7¹⁷.

I risultati ottenuti devono essere confrontati con le specifiche tecniche fornite dal produttore, al fine di verificare la rispondenza.

¹⁶ Metodo con il permeabilimetro di Blaine

¹⁷ UNI EN 196-7 (2001) - Metodi di prova dei cementi. Metodi di prelievo e di campionatura del cemento
3.4.2 Controlli sulla miscela

Al fine di verificare le caratteristiche della miscela, deve essere svolta una serie di prove di qualificazione.

I campioni, prelevati sia dall’impianto di miscelazione sia direttamente dallo scavo, a differenti profondità (almeno uno nella porzione superficiale e uno a fondo scavo), devono essere sottoposti alle seguenti prove:

- 1 misura in sito di pH;
- 3 misure in sito di peso specifico;
- 5 misure di viscosità utilizzando il cono di Marsh;
- 1 prova in sito di decantazione, dopo 4 ore;
- 1 prova di perdita a filtraggio (API PP 131 B);
- 6 prove di permeabilità dopo 28 giorni di maturazione in acqua;
- 9 prove di compressione non confinata (2 prove a 7 e 14 giorni di maturazione, 5 a 28 giorni);

Figura 18: campionamento della miscela in sito.

Il materiale dovrà rispondere ai seguenti requisiti:

- pH: 6.5 ÷ 10;
- peso specifico: < 1.03 g/m³;
- viscosità:
 - < 32 secondi su campioni prelevati dall’impianto di miscelazione;
 - < 65 secondi su campioni prelevati dallo scavo;
- decantazione: < 1%.
• perdita a filtraggio: < 180 cm³;
• conducibilità idraulica: i risultati devono essere conformi alle specifiche progettuali;
• resistenza a compressione non confinata: 1.5 ÷ 10 Mpa.

Figura 19: impianto di produzione della miscela plastica.

3.4.3 Geomembrane

Al fine di certificare l'integrità dello strato di impermeabilizzazione, occorre verificare la rispondenza del materiale alle specifiche tecniche fornite dal produttore, oltre che la correttezza delle operazioni di posa.

3.4.3.1 Controlli sul materiale

Prima della messa in opera occorre assicurarsi che le procedure di imballaggio, trasporto e movimentazione non abbiano danneggiato il materiale; i rotoli, i quali devono essere riconoscibili attraverso un apposito contrassegno di identificazione che ne illustra le specifiche tecniche, devono essere stoccati in un luogo riparato dagli agenti atmosferici e coperti con teli opachi per evitare l'esposizione diretta ai raggi UV (ASTM D4873).

Durante le operazioni di messa in opera, deve essere prelevato un campione di geomembrana ogni 500 m² di materiale per l’esecuzione le seguenti prove:
• spessore (ASTM D5199; UNI EN 1849);
• resistenza a rottura (ASTM D638, UNI EN 12311);
3.4.3.2 Controlli sulle giunture

La giunzione tra i teli in HDPE deve essere effettuata con appositi elementi ad incastro la cui tipologia dovrà soddisfare i seguenti requisiti minimi:

- presentare un profilo di accoppiamento di almeno 150 mm in modo da allungare efficacemente il percorso dei filetti fluidi;
- consentire l’eventuale introduzione nel giunto di adeguate guarnizioni rigonfianti e/o distanziatori;
- assicurare un accoppiamento efficiente sia nella fase di introduzione del telo sia in fase di esercizio.

La saldatura dei giunti ai teli deve essere eseguita con accessori e tecniche specifiche (vedi paragrafo 2.4.2.2) da personale qualificato, secondo gli standard imposti dalla norma UNI 10567.

L’affidabilità delle saldature deve essere controllata attraverso l’esecuzione dei seguenti test:

<table>
<thead>
<tr>
<th>Prove</th>
<th>Frequenza</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test su giunture di prova</td>
<td>2 per giornata di lavoro</td>
<td>UNI 10567</td>
</tr>
<tr>
<td>Test non distruttivi</td>
<td>1 per saldatura</td>
<td>UNI 10567</td>
</tr>
<tr>
<td>Test distruttivi</td>
<td>1 ogni 100m di saldatura</td>
<td></td>
</tr>
</tbody>
</table>

I test non distruttivi, applicati alle saldature a doppia pista, consistono nell’immissione di aria compressa all’interno del canale tra le due fasce saldate e nella verifica della tenuta per almeno 10 minuti. La pressione applicata è proporzionale alla temperatura e allo spessore della geomembrana (ad esempio per un telo di HDPE a 20 °C la pressione da applicare è di circa 5 – 6 bar). La prova si considera superata quando l’eventuale caduta di pressione non supera il 10% del valore imposto.

Le saldature per estrusione devono essere controllate con un rilevatore a ultrasuoni, costituito da una sonda emittente e ricevente che, dopo opportuna taratura, permette di misurare lo spessore della saldatura evidenziandone eventuali discontinuità.

I test distruttivi vengono eseguiti su campioni prelevati in sito, di forma approssimativamente quadrata con lato minimo di 30 cm, su cui vengono misurate:
Linee guida per la verifica ed il collaudo delle barriere impermeabili per la messa in sicurezza di siti contaminati

- **Resistenza al taglio** o shear strength (UNI 8202/30): la saldatura deve essere in grado di sopportare uno sforzo pari all’80 % del valore specificato per la geomembrana;

- **Sfogliamento** o peel strength (UNI 10567): deve essere in grado di sopportare uno sforzo pari a 1750 N/m (10 lbs/in).

Le giunzioni devono essere costituite da un unico elemento per tutto lo sviluppo verticale del diaframma; qualora la saldatura dei giunti sia inevitabile (nel caso la profondità del diaframma sia superiore alla lunghezza massima del giunto commercialmente disponibile), le saldature devono essere verificate nella misura del 100 per cento.

Durante la messa in opera dei pannelli in HDPE deve essere verificato l’accoppiamento dei semigiunti mediante l’introduzione nel semigiunto già in opera di un testimone costituito da uno spezzone di semigiunto, lungo approssimativamente 15 cm, sospeso ad un filo metallico mantenuto in tensione. Il testimone viene spinto lungo il semigiunto in opera dal pannello in fase di introduzione e la prova viene considerata positiva se il testimone fuoriesce dall’estremità inferiore del semigiunto.

L’accoppiamento dei due semigiunti deve avvenire correttamente al primo tentativo; è ammessa un’unica ripetizione della manovra ogni 25 m lineari di estensione del diaframma.

Per la verifica dell’integrità dei giunti è stato anche sviluppato un metodo geoelettrico applicabile se questi sono dotati di una cavità interna. Il metodo è basato sulla misura della resistività utilizzando un quadripolo, costituito da due elettrodi di corrente e due elettrodi di potenziale, che viene inserito all’interno dei giunti e spostato lungo il giunto stesso ad intervalli di mezzo metro.

In corrispondenza di ciascun intervallo è misurato un valore di resistività che viene successivamente comparato con un valore di riferimento ottenuto, nelle medesime condizioni, dall’osservazione di un giunto integro. Poiché gli eventuali difetti del giunto determinano un netto decremento della resistività, questi possono essere facilmente rilevati, fino a una dimensione minima di 10 cm2.

3.4.4 Controlli sulla geometria del diaframma

I controlli sulla geometria del diaframma sono finalizzati a verificare che esso sia stato costruito a regola d’arte e in particolare:

a) che l’immorsamento nello strato impermeabile basale sia conforme alla profondità prevista in fase progettuale;

b) che il diaframma sia verticale;

c) che la posizione dei teli della geomembrana sia corretta (verticali, centrati rispetto allo spessore del diaframma e privi di discontinuità rispetto allo strato impermeabile sottostante)
A questo scopo, ogni 5 metri, devono essere effettuate le seguenti verifiche:

- posizione planimetrica dell’asse dello scavo;
- quota del piano di campagna;
- profondità del tetto dello strato impermeabile;
- profondità del fondo scavo;
- verticalità dell’escavazione;
- larghezza dello scavo;
- dimensioni dei pannelli di geomembrana;
- verticalità del telaio della geomembrana;
- quota sul piano di campagna della parte superiore della geomembrana (misura da ripetere dopo l’indurimento del fango);
- posizione orizzontale nello scavo della sezione di geomembrana (misura da ripetere dopo l’indurimento del fango);

Le misure di verticalità possono essere eseguite utilizzando un inclinometro registratore bidirezionale.

Un fattore critico è la possibile mancanza di continuità tra lo strato impermeabile e la geomembrana. Dal momento che le costruzioni in sotterraneo sono inevitabilmente affette da una qualche tolleranza costruttiva, tale mancanza di continuità non può essere completamente evitata ed è quindi, in qualche misura, sempre presente; il limite massimo di tolleranza è dell’ordine di cinque centimetri.

3.5 Controlli ad opere ultimate

I controlli ad opere ultimate vengono realizzati dopo un tempo predeterminato per accertarne il comportamento nelle reali condizioni d’esercizio. Hanno la funzione, unitamente ai controlli in corso d’opera, di consentire la verifica dell’esecuzione dell’opera in conformità al progetto.

Le prove ad opera ultimata possono sostanzialmente essere classificate in prove invasive, le quali necessitano di un intervento diretto sull’opera (campionamenti, perforazioni, infissione di strumenti, ecc...), e in prove non invasive, che non richiedono installazioni sulla stessa.

Poiché le prove invasive potrebbero danneggiare l’opera definitiva (soprattutto se è prevista la geomembrana) è buona norma realizzare pannelli di prova, fuori opera o in continuità (elementi a T), rappresentativi di un tratto di diaframma, eseguiti con gli stessi materiali e le medesime procedure operative. In alcuni casi (ad esempio anche per le palancolé metalliche) può anche essere realizzata un’area confinata di dimensioni ridotte (campo prova).

Nella Tabella 6 vengono riportati i principali tipi di controllo di qualità delle barriere ad opera ultimata, riassumendone le caratteristiche fondamentali.
<table>
<thead>
<tr>
<th>Prova</th>
<th>Vantaggi</th>
<th>Svantaggi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test di stress idraulico</td>
<td>Prove su grande scala</td>
<td>Costi elevati.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per barriere di grandi dimensioni, solo una parte del sistema viene testato.</td>
</tr>
<tr>
<td>Metodi geofisici (elettrici, elettromagnetici, ecc.)</td>
<td>Prove su grande scala</td>
<td>Difficoltà di esecuzione.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le prove sono facilmente disturbate in aree inquinate e/o altamente industrializzate.</td>
</tr>
<tr>
<td>Prove di infiltrazione (piezometri inseriti mediante carotaggio o preinstallati, sistemi BAT, permeametri autoperforanti)</td>
<td>Prove eseguite direttamente sul diaframma in sito</td>
<td>Vengono interessati piccoli volumi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approccio costoso e piuttosto lento se viene richiesto un numero elevato di misure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Si deve prestare attenzione alla fratturazione idraulica.</td>
</tr>
<tr>
<td>Prove con piezocono (CPTU)</td>
<td>Costi ridotti e rapidità di esecuzione.</td>
<td>Non applicabile all'interno di materiale ad elevata resistenza.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I risultati devono essere validati attraverso il confronto con altre prove.</td>
</tr>
<tr>
<td>Prove di permeabilità su campioni</td>
<td>Costi ridotti e rapidità di esecuzione.</td>
<td>Possibile non rappresentatività dei campioni prelevati.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valori puntuali e spesso poco rappresentativi delle prestazioni dell'intera struttura.</td>
</tr>
</tbody>
</table>

Tabella 6 – Controlli ad opere ultimate
3.5.1 Test di stress idraulico

Queste prove consistono nell’esecuzione di una prova di pompaggio in un settore limitrofo alla barriera verticale e nella valutazione dei livelli piezometrici misurati in piezometri installati sia internamente che esternamente alla barriera stessa.

L’andamento dei livelli e la relativa interpretazione consente di verificare:

- la rispondenza dei risultati ottenuti con i valori di conducibilità idraulica stimati in fase di caratterizzazione idrogeologica del sito;
- l’assenza di variazione piezometriche nei piezometri esterni al sistema di isolamento a testimonianza dell’assenza di continuità idraulica tra il settore interno alla barriera e quello esterno.

Nel caso di barriere molto estese, i risultati vanno riferiti solo alla porzione di barriera interna al raggio di influenza del pozzo utilizzato per la prova.

L’esecuzione di queste prove, generalmente costose, può causare il danneggiamento della struttura a causa di un incremento eccessivo del gradiente idraulico indotto dal pompaggio.

3.5.2 Metodi geofisici

Le indagini geofisiche consentono di individuare eventuali difetti di costruzione della barriera come discontinuità strutturali o il mancato immorsamento nello strato impermeabile di fondo.

Mentre le indagini dirette forniscono dati puntuali, al massimo riferibili alla verticale sul punto di indagine, le indagini indirette forniscono una visione bidimensionale e tridimensionale delle caratteristiche del diaframma. Inoltre, poiché le indagini dirette incidono sull’integrità strutturale della barriera, specialmente se applicate a diaframmi di piccolo spessore o a diaframmi compositi con geomembrana interna, i metodi geofisici rappresentano una risorsa utile per i casi in cui non è possibile predisporre una barriera di prova fuori sito.

Le misure geofisiche presentano tuttavia alcuni svantaggi riguardanti la difficoltà di esecuzione e la possibilità di ottenere risultati poco significativi in zone altamente industrializzate a causa dell’interferenza con infrastrutture sotterranee, strade trafficate, edifici, recinti metallici, ecc., come pure in aree in cui le variazioni delle proprietà fisiche tra il terreno contaminato e terreno non contaminato non sono rilevanti.

Le prove comunemente impiegate per il controllo post operam ed il monitoraggio delle barriere impermeabili verticali comprendono principalmente metodi elettromagnetici, georadar ed elettrici.
3.5.2.1 Metodi elettromagnetici

I metodi elettromagnetici, detti anche ad induzione, permettono di misurare la conduttività elettrica dei terreni e dei materiali costituenti la barriera impermeabile.

Nella bobina emittente viene fatta passare una corrente alternata a cui si associa un campo elettromagnetico primario, che investe una porzione di sottosuolo e una bobina ricevente posta ad una certa distanza; nelle zone a diversa conduttività eventualmente presenti nel sottosuolo, vengono indotte delle correnti elettriche che originano a loro volta dei campi elettromagnetici secondari. Il ricevitore viene pertanto investito dal campo magnetico primario e da quelli secondari, i quali saranno distorti rispetto al primario in ampiezza e fase. La misura di queste modificazioni consente di identificare nel sottosuolo zone a diversa conduttività.

Poiché la conduttività dei terreni dipende largamente dal contenuto d’acqua e dalla concentrazione di elettroliti dissolti, questo metodo permette di identificare la presenza di settori contaminati a valle della barriera impermeabile, indicando la presenza di difetti strutturali nella stessa. Inoltre, in considerazione del fatto che le miscele cemento – bentonite sono fortemente conduttive in relazione alla grande quantità di ioni liberi presenti, tali difetti (fessurazioni o disomogeneità) possono essere identificati da una diminuzione della conduttività in alcuni settori della barriera impermeabile.

![Figura 20 – Esempio di prospezione con georadar (GPR)](image-url)
3.5.2.2 **GPR (Ground Penetrating Radar)**

Il GPR (Ground Penetrating Radar) ad impulso elettromagnetico è un sistema elettronico, in grado di indagare i terreni e i materiali con notevole dettaglio utilizzando la riflessione d'onde elettromagnetiche prodotte da un trasmettitore d'impulsi elettromagnetici a larga banda.

La rapida successione di trasmissione d'impulsi e di ricezioni d'onde riflesse permette la ricostruzione di una serie di sezioni verticali che illustrano visivamente gli andamenti delle discontinuità presenti nel sottosuolo, permettendo così di individuare la presenza di materiali metallici, fondazioni in cemento, tubazioni, cavi, cavità, perdite di liquidi.

Le applicazioni di questo strumento alla verifica delle barriere impermeabili verticali permettono di evidenziare fratture e disomogeneità della barriera.

3.5.2.3 **Metodi elettrici**

I metodi elettrici con stendimenti tradizionali (Wenner, Schlumberger, dipolo-dipolo, ecc.) possono fornire indicazioni sulla presenza di contaminanti nel sottosuolo sulla base di una misura dei diversi valori di resistività del sottosuolo, al passaggio di una corrente continua.

In sintesi, il metodo si basa sul principio secondo il quale, applicando una corrente di intensità nota per mezzo di due elettrodi AB (elettrodi di corrente) e misurando una differenza di potenziale tra due elettrodi MN (elettrodi di potenziale), è possibile risalire alla resistività del terreno.

I metodi elettrici, come gli altri metodi geofisici descritti precedentemente, consentono di individuare discontinuità e disomogeneità nella barriera. Possono essere applicati anche per la localizzazione di una contaminazione delle acque sotterranee, ma l'esperienza nel campo delle discariche ha evidenziato che le correlazioni tra le caratteristiche idrochimiche delle acque sotterranee e i risultati delle prospezioni elettriche hanno un margine di errore estremamente alto.

3.5.3 **Prove di infiltrazione**

Le prove di permeabilità in foro di sondaggio applicabili a sistemi di confinamento verticali sono riconducibili essenzialmente a quelle applicate ai terreni naturali e possono essere a carico costante o a carico variabile.

La maggiore difficoltà nell'esecuzione di questo tipo di prove consiste nell'esecuzione della perforazione di sondaggio, in quanto potrebbe danneggiare fortemente la barriera e/o eventuali geomembrane interne, e nel garantire la verticalità del foro in modo che esso rimanga interamente all'interno del diaframma.
Generalmente i valori di conducibilità idraulica ottenuti con le prove di permeabilità in foro di sondaggio risultano essere 1 o 2 ordini di grandezza superiori a quelli risultanti da prove di laboratorio su campioni del diaframma.

3.5.4 Prove con piezocono

Per la verifica post-operam della tenuta di diaframmi in cemento – bentonite si possono applicare prove CPTU con piezocono in fori di sondaggio operati nella barriera.

Esse presentano il vantaggio di essere di veloce esecuzione e possono essere ripetute nel tempo anche su verticali di indagine molto vicine, fornendo inoltre indicazioni sulla omogeneità della miscela.

Gli svantaggi riguardano la possibile fuoriuscita della punta dal diaframma, la possibilità di danneggiare le geomembrane eventualmente installate e alcune incertezze in fase di interpretazione dei risultati.

Per l’interpretazione delle prove si può fare riferimento alle seguenti relazioni (Manassero, 1994):

\[
\log k = 2.61\sqrt{\frac{B_k}{k}} - 10.93
\]

in cui:

\[
B_k = \frac{q_t^2}{100 \cdot f_s \cdot \Delta u}
\]

e:
- \(k \) = conducibilità idraulica del diaframma
- \(q_t \) = resistenza alla punta;
- \(f_s \) = resistenza all’attrito laterale;
- \(\Delta u \) = incremento di pressione interstiziale.

Figura 21: Esempio di risultati di prove CPTU eseguite (Manassero, 1994)
3.5.5 **Prove di permeabilità su campioni**

Le prove in laboratorio più comunemente utilizzate nella fase post operam sono quelle eseguite con permeametro a parete flessibile. Il prelievo dei campioni di diaframma è un’operazione critica a causa del comportamento piuttosto fragile delle miscele cemento – bentonite in condizioni drenate e della sensibilità alla fratturazione meccanica durante le fasi di trivellazione; è difficile infatti ottenere una percentuale elevata di campioni rappresentativi per cui spesso non si può sapere in che misura il disturbo dei campioni influisca sui risultati delle misure.

Qualora si ritenga che l’estruzione del campione dal tubo campionatore possa danneggiare irreparabilmente l’integrità del materiale, può essere utile confezionare il provino evitando questa operazione e prelevando direttamente dalla fustella tramite il taglio di porzioni trasversali. Le prove saranno quindi eseguite sul materiale contenuto negli anelli rigidi.

In generale le prove di laboratorio su campioni di diaframma forniscono dei valori puntuali, e spesso poco rappresentativi, delle prestazioni dell’intera struttura in termini di impermeabilità.

Queste discrepanze nascono non solo a causa della presenza di difetti connessi a problemi in fase di costruzione dell’opera (giunti tra pannelli, lentì di materiale più permeabile, disomogeneità e fratture nel diaframma), ma anche a problematiche insite nelle prove di permeabilità in laboratorio, come descritte dalla tabella seguente:

<table>
<thead>
<tr>
<th>Problematica</th>
<th>Causa</th>
<th>Errore</th>
<th>Precauzioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradiente idraulico</td>
<td>Deve essere mantenuto elevato per garantire un sufficiente passaggio di acqua in tempi relativamente brevi</td>
<td>Non è rappresentativo delle condizioni in posto.</td>
<td>Devono essere condotte più prove con gradienti idraulici diversi per verificare la ripetitività dei risultati.</td>
</tr>
<tr>
<td>Migrazione ed orientazione delle particelle</td>
<td>Gradienti idraulici elevati</td>
<td>Sottostima della conducibilità idraulica</td>
<td>Controllo della migrazione delle particelle tramite analisi granulometrica del campione a fine prova</td>
</tr>
<tr>
<td>Consolidazione verticale</td>
<td>Area trasversale del provino ridotta</td>
<td></td>
<td>Provini di ridotte dimensioni</td>
</tr>
</tbody>
</table>
Problematica | **Causa** | **Errore** | **Precauzioni**
---|---|---|---
Saturazione | La pressione di confinamento indotta con sistemi ad aria compressa può portare aria in soluzione | Diminuzione della conducibilità idraulica per effetto della saturazione incompleta | Arieggiare frequentemente il liquido permeante

Effetti ai bordi | Pressione di confinamento elevata | Diminuzione dell’area trasversale al provino. Sottostima della conducibilità idraulica | Utilizzo di provini con diametro superiore a 35 mm

Rapporto altezza/diametro del provino | Dimensioni del provino | La conducibilità idraulica diminuisce all’aumentare del rapporto lunghezza/diametro | Necessaria standardizzazione

3.5.6 Prove di tenuta di un palancolato metallico

Questo tipo di prove, eseguite su un tratto sperimentale chiuso di palancolato (campo prova), permettono di verificare la tenuta idraulica nelle condizioni di esercizio.

Durante l’esecuzione, la parte interna dell’impianto di prova viene riempito d’acqua mentre il tratto di palancolato viene deformato progressivamente con martinetti idraulici al fine di simulare la spinta del terreno. Vengono generalmente applicati 6 incrementi di deformazione corrispondenti a frecce rispettivamente pari a 10, 20, 30, 40, 60, 90 mm.

Ad ogni intervallo di deformazione, della durata non inferiore a 4 minuti, viene verificata la totale assenza di perdite d’acqua.

La durata ridotta della prova non consente però di disporre di valutazioni complessive sulla tenuta del sistema a lungo termine.

Altre prove per verificare la tenuta di palancolati metallici consistono in prove di stress idraulico o prove con traccianti.

Nel primo caso, applicabile per cinturazioni complete, viene pompata acqua da un pozzo interno al palancolato, verificandone la tenuta in base all’assenza di abbassamenti indotti in piezometri esterni al marginamento. Nel caso di prove con traccianti si immette un composto tracciante in un pozzo esterno in prossimità di un
giunto e si controlla la tenuta verificando la concentrazione del tracciante in piezometri interni.

3.6 Controlli a medio e a lungo termine

I controlli da effettuare in questa fase si configurano sostanzialmente come un monitoraggio ambientale finalizzato a verificare il raggiungimento, a medio e a lungo termine, degli obiettivi progettuali cioè il confinamento delle contaminazioni e la messa in sicurezza del sito.

A tal fine è necessaria l’installazione di piezometri, in settori interni ed esterni alla barriera, che consentano, attraverso la misura dei livelli piezometrici e il prelievo di campioni d’acqua da sottoporre a prove in laboratorio, la misura sia dei flussi idrici in ingresso e in uscita dalla sorgente di contaminazione, sia dell’entità di eventuali fenomeni di migrazione dei contaminanti esternamente al sistema di contenimento.

La progettazione della rete di monitoraggio delle acque sotterranee (ubicazione e profondità dei punti di prelievo) deve essere eseguita sulla base del modello idrogeologico del sito e delle informazioni raccolte durante i controlli di qualità in corso d’opera. Infatti qualora si siano evidenziati punti di debolezza del sistema di confinamento, come ad esempio la presenza di discontinuità nella barriera impermeabile di fondo, è opportuno che la rete venga predisposta per controllare le zone più sensibili.

Dal punto di vista operativo, i controlli da effettuare sono i seguenti:

a) Qualità delle acque sotterranee: le analisi devono essere effettuate prelevando campioni di acque sotterranee in piezometri interni e, soprattutto, esterni al sistema di confinamento da sottoporre successivamente ad analisi chimiche in laboratori certificati. In siti di particolare interesse possono essere installate apparecchiature che rilevano direttamente, e quasi in continuo, alcuni parametri indice quali la conducibilità elettrica, il pH, il potenziale redox, ecc. Nel caso in cui vengano rilevate delle variazioni nei parametri indice occorre procedere tempestivamente con il prelievo di campioni da sottoporre ad analisi chimiche complete.

b) Livelli piezometrici: le letture dei livelli piezometrici devono essere effettuate in piezometri accoppiati posti all’interno e all’esterno della barriera e spaziati tra loro di qualche decina di metri. La finalità è quella di controllare l’esistenza di un gradiente idraulico positivo (ovvero i livelli all’interno della barriera devono essere inferiori a quelli misurati esternamente) il cui mantenimento costituisce un elemento di sicurezza rispetto un’eventuale propagazione della contaminazione in direzione laterale rispetto alla barriera. A tal fine può essere necessario prevedere uno o più pozzi di aggottamento all’interno della barriera.

c) Integrità e prestazioni della barriera: le verifiche possono essere effettuate applicando una o più delle metodologie utilizzate per i controlli ad opere ultimate (paragrafo 3.5):
• prove di permeabilità su campioni;
• test di stress idraulico;
• metodi geofisici;
• prove di filtrazione;
• prove con piezocono.

Devono inoltre essere condotte delle misure inclinometriche, sia in corrispondenza della barriera sia in terreni limitrofi, al fine di verificare che le nuove condizioni idrauliche non costituiscano un fattore di instabilità.

Per quanto riguarda la frequenza dei controlli si sottolinea l’importanza di un monitoraggio sistematico effettuato ad intervalli di tempo regolari (cadenza minima trimestrale).

La durata complessiva delle procedure di controllo per la certificazione della messa in sicurezza del sito è pari a 5 anni come stabilito dal D.L. 471/99 (articolo 12, comma 2).

3.7 Interventi di manutenzione ordinaria, straordinaria e piani di emergenza

La modalità e la tempistica degli interventi di manutenzione ordinaria delle opere deve essere specificata nel progetto al fine di mantenere nel tempo la loro efficienza.

Deve essere inoltre formulato un piano di emergenza da attuare nei casi in cui la rete di monitoraggio evidenzi episodi di inquinamento, specificando anche in questo caso la tempistica e le modalità di intervento.

Nel caso si configurino interventi straordinari, quali ad esempio la messa in opera di sottoservizi (tubature gas metano, rete elettrica, collettori fognari, ecc.) che interferiscano con le opere realizzate, devono essere previste particolari precauzioni sia in fase di realizzazione sia in fase di successivo ripristino.
BIBLIOGRAFIA

Linee guida per la verifica ed il collaudo delle barriere impermeabili per la messa in sicurezza di siti contaminati

APPENDICE 1 – CARATTERISTICHE DEI SISTEMI DI IMPERMEABILIZZAZIONE DELLE DISCARICHE DI RIFIUTI SECONDO LA NORMATIVA VIGENTE IN ITALIA

Di seguito sono sinteticamente presentate le caratteristiche costruttive e prestazionali dei sistemi di impermeabilizzazione delle discariche che talora vengono adottate, per analogia ed in assenza di riferimenti specifici, per i sistemi di confinamento dei terreni contaminati nell’ambito delle opere di messa in sicurezza.

Si ricorda che, escludendo il caso dei rifiuti inerti che non possono essere assimilati alle condizioni dei terreni contaminati, generalmente si avranno molto più frequentemente caratteristiche di isolamento da rispettare analoghe a quelle dei rifiuti non pericolosi.

Nella seguente Tabella 1 sono illustrate le caratteristiche dei sistemi di isolamento di fondo e laterale dei vari tipi di discarica.

La tenuta del sistema di isolamento deve essere considerata nei termini riportati nelle prime due righe della Tabella 1

Tabella 1 – Caratteristiche della struttura di impermeabilizzazione di fondo e laterale secondo il D.Lgs. 13 gennaio 2003, n. 36

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Rifiuti inerti</th>
<th>Rifiuti non pericolosi</th>
<th>Rifiuti pericolosi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spessore barriera geologica (m)</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>≥ 5</td>
</tr>
<tr>
<td>Conducibilità idraulica k (m/s)</td>
<td>≤ 10⁻⁷</td>
<td>≤ 10⁻⁹</td>
<td>≤ 10⁻⁹</td>
</tr>
<tr>
<td>Spessore minimo eventuale barriera creat. artificiale (m)</td>
<td>≥ 0.5</td>
<td>≥ 0.5</td>
<td>≥ 0.5</td>
</tr>
<tr>
<td>Conducibilità idraulica massima eventuale barriera creat. artificiale (m/s)</td>
<td>≤5·10⁻⁸</td>
<td>≤5·10⁻¹⁰</td>
<td>≤10⁻¹⁰</td>
</tr>
<tr>
<td>Rivestimento impermeabile artificiale</td>
<td></td>
<td>Richiesto</td>
<td>Richiesto</td>
</tr>
<tr>
<td>Spessore strato minerale drenante al di sopra del rivestimento impermeabile (m)</td>
<td></td>
<td>≥ 0.5</td>
<td>≥ 0.5</td>
</tr>
<tr>
<td>Protezione rivestimento artificiale e/so sistema di barriera di confinamento</td>
<td></td>
<td>Richiesto</td>
<td>Richiesto</td>
</tr>
<tr>
<td>Franco rispetto alla minima soggiacenza della falda in un acquifero non confinato - U o al tetto dell’acquifero confinato – C (m)</td>
<td>1.5 (U e C)</td>
<td>1.5 (C), 2 (U)</td>
<td>1.5 (C), 2 (U)</td>
</tr>
</tbody>
</table>
Nel caso la barriera geologica non possieda tali caratteristiche e quindi debba essere completata artificialmente è possibile applicare un criterio di equivalenza per il quale è indicato comunque uno spessore minimo riportato nella terza riga.

Applicando questa ultima condizione viene ricavato in quarta riga il valore massimo che può avere uno spessore minimo di barriera creata artificialmente.

L’esigenza di un rivestimento artificiale (ad esempio geomembrana) viene indicata in quinta riga.

Particolari soluzioni progettuali che permettano garanzie equivalenti possono essere previste per le sponde (parti laterali del confinamento) anche con spessore inferiore a 0.5 m, purché approvate dall’Ente territoriale competente.

Per quanto attiene alle coperture si osservano invece le caratteristiche prestazionali riportate in Tabella 2.

Tabella 2 – Caratteristiche della struttura di impermeabilizzazione superficiale secondo il D.Lgs. 13 gennaio 2003, n. 36

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Rifiuti inerti</th>
<th>Rifiuti non pericolosi</th>
<th>Rifiuti pericolosi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spessore ricopertura superiore (m)</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>≥ 1</td>
</tr>
<tr>
<td>Spessore strato di drenaggio (m)</td>
<td>≥ 0.5</td>
<td>≥ 0.5</td>
<td>≥ 0.5</td>
</tr>
<tr>
<td>Conducibilità idraulica strato minerale impermeabile (m/s)</td>
<td>bassa</td>
<td>≤10⁻⁸</td>
<td>≤10⁻⁸</td>
</tr>
<tr>
<td>Spessore strato minerale impermeabile (m)</td>
<td>≥ 0.5</td>
<td>≥ 0.5</td>
<td>≥ 0.5</td>
</tr>
<tr>
<td>Rivestimento impermeabile artificiale</td>
<td>-----------</td>
<td>----------------------</td>
<td>Richiesto</td>
</tr>
<tr>
<td>Spessore strato di drenaggio dei gas e rottura capillare (m)</td>
<td>-----------</td>
<td>≥ 0.5</td>
<td>≥ 0.5</td>
</tr>
<tr>
<td>Strato di regolarizzazione</td>
<td>Richiesto</td>
<td>Richiesto</td>
<td>Richiesto</td>
</tr>
</tbody>
</table>
APPENDICE 2 – NORME UNI SUI GEOSINTETICI

La normativa italiana sui geosintetici fa riferimento essenzialmente ai prodotti geotessili; per quanto riguarda le geomembrane non esistono ancora norme specifiche e si fa quindi riferimento alle norme relative ai nontessuti e alle membrane polimeriche che di recente sono state appositamente revisionate.

Norme standardizzate sulle membrane polimeriche e metodi di prove per le membrane impermeabilizzanti

<table>
<thead>
<tr>
<th>Numero norma</th>
<th>Data pubbl.</th>
<th>Titolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNI 10567</td>
<td>31/10/96</td>
<td>Membrane di polietilene per impermeabilizzazione di discariche controllate. Criteri generali per la saldatura ed il controllo della qualità dei giunti saldati. (Codice ICS: 25.160.40 91.100.50)</td>
</tr>
<tr>
<td>UNI 8202-1</td>
<td>30/09/81</td>
<td>Edilizia. Membrane per impermeabilizzazione. Generalità per le prove. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-10</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della deformazione residua a trazione. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-11</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della resistenza al punzonamento statico. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-12</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della resistenza al punzonamento dinamico. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-13</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della resistenza a fatica su fessura. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-14</td>
<td>30/09/81</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della tensione indotta da ritiro termico impedito. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-15</td>
<td>31/03/84</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della flessibilità a freddo. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-16</td>
<td>31/03/84</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione dello scorrimento a caldo. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-17</td>
<td>31/03/84</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della stabilità dimensionale a seguito di azione termica. (Codice ICS:</td>
</tr>
<tr>
<td>UNI 8202-18</td>
<td>31/03/84</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della stabilità di forma a caldo. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-19</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della dilatazione termica differenziale. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-20</td>
<td>02/10/87</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione del coefficiente di dilatazione termica lineare. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-21</td>
<td>31/03/84</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della impermeabilità all'acqua. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-22</td>
<td>31/12/82</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione del comportamento all'acqua. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-23</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della permeabilità al vapore d'acqua. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-24</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della resistenza all'azione perforante delle radici. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-25</td>
<td>30/04/84</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della reazione al fuoco. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-26</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione dell'invecchiamento termico in aria. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-27</td>
<td>31/12/82</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione dell'invecchiamento termico in acqua. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-28</td>
<td>30/04/84</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della resistenza all’ozono. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-29</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della resistenza alle radiazioni U.V. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-3</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della lunghezza. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-30</td>
<td>30/04/84</td>
<td>Edilizia. Membrane per impermeabilizzazione. Prova di trazione delle giunzioni. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-31</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione dell'impermeabilità all'aria delle giunzioni. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-32</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della resistenza a fatica delle giunzioni. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-33</td>
<td>01/04/84</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della resistenza allo scorrimento delle giunzioni. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-33/A258</td>
<td>01/07/88</td>
<td>Foglio di aggiornamento n. 1 alla UNI 8202 parte 33 (apr. 1984) - Edilizia. Membrane per impermeabilizzazione. Determinazione della resistenza allo scorrimento delle giunzioni. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-34</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della resistenza all'invecchiamento termico delle giunzioni (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>UNI 8202-35</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione del quantitativo e dell'aderenza dell'autoprotezione minerale.</td>
</tr>
</tbody>
</table>
Linee guida per la verifica ed il collaudo delle barriere impermeabili per la messa in sicurezza di siti contaminati

<table>
<thead>
<tr>
<th>Codice UNI</th>
<th>Data</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>8202-4</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della larghezza. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>8202-5</td>
<td>30/09/81</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione dell' ortometria. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>8202-6</td>
<td>01/11/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione dello spessore. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>8202-6/A1</td>
<td>01/09/89</td>
<td>Membrane per impermeabilizzazione. Determinazione dello spessore. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>8202-7</td>
<td>30/09/81</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della massa areica. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>8202-8</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della resistenza a trazione. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>8202-9</td>
<td>31/07/88</td>
<td>Edilizia. Membrane per impermeabilizzazione. Determinazione della resistenza alla lacerazione. (Codice ICS: 91.060.20-40)</td>
</tr>
<tr>
<td>8898-1</td>
<td>01/02/87</td>
<td>Membrane polimeriche per opere di impermeabilizzazione. Terminologia, classificazione e significatività delle caratteristiche. (Codice ICS: 83.140.99)</td>
</tr>
<tr>
<td>8898-6</td>
<td>31/01/01</td>
<td>Membrane polimeriche per opere di impermeabilizzazione. Membrane plastomeriche rigide. Caratteristiche e limiti di accettazione. (Codice ICS: 83.140.10)</td>
</tr>
<tr>
<td>SPERIMENTALE 8898-2</td>
<td>30/04/87</td>
<td>Membrane polimeriche per opere di impermeabilizzazione. Membrane elastomeriche senza armatura. Caratteristiche e limiti di accettazione. (Codice ICS: 83.140.99)</td>
</tr>
<tr>
<td>SPERIMENTALE 8898-3</td>
<td>31/05/87</td>
<td>Membrane polimeriche per opere di impermeabilizzazione. Membrane elastomeriche dotate di armatura. Caratteristiche e limiti di accettazione. (Codice ICS: 83.140.99)</td>
</tr>
<tr>
<td>SPERIMENTALE 8898-4</td>
<td>30/11/88</td>
<td>Membrane polimeriche per opere di impermeabilizzazione. Membrane plastomeriche flessibili senza armatura. Caratteristiche e limiti di accettazione. (Codice ICS: 83.140.99)</td>
</tr>
<tr>
<td>SPERIMENTALE 8898-5</td>
<td>30/11/88</td>
<td>Membrane polimeriche per opere di impermeabilizzazione. Membrane plastomeriche flessibili dotate di armatura. Caratteristiche e limiti di accettazione. (Codice ICS: 83.140.99)</td>
</tr>
<tr>
<td>SPERIMENTALE 8898-7</td>
<td>01/11/88</td>
<td>Membrane polimeriche per opere di impermeabilizzazione. Membrane elastomeriche a reticolazione posticipata dotate di armatura. Caratteristiche e limiti di accettazione. (Codice ICS: 83.140.99)</td>
</tr>
<tr>
<td>7092</td>
<td>1972</td>
<td>Prove sulle materie plastiche. Determinazione della massa volumica delle materie plastiche non alveolari.</td>
</tr>
<tr>
<td>Codice Normativo</td>
<td>Anno</td>
<td>Descrizione</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>UNI EN 1107</td>
<td>2002</td>
<td>Membrane flessibili per impermeabilizzazione - Membrane bituminose per l'impermeabilizzazione delle coperture - Determinazione della stabilità dimensionale</td>
</tr>
<tr>
<td>UNI EN 12310</td>
<td>2002</td>
<td>Membrane flessibili per impermeabilizzazione - Determinazione della resistenza alla lacerazione - Membrane di materiale plastico e gomma per l'impermeabilizzazione delle coperture</td>
</tr>
<tr>
<td>UNI EN 12311</td>
<td>2002</td>
<td>Membrane flessibili per impermeabilizzazione - Determinazione delle proprietà a trazione - Membrane di gomma e di materiale plastico per l'impermeabilizzazione di coperture</td>
</tr>
<tr>
<td>UNI EN 1849</td>
<td>2002</td>
<td>Membrane flessibili per impermeabilizzazione - Determinazione dello spessore e della massa areica - Membrane bituminose per l'impermeabilizzazione delle coperture</td>
</tr>
<tr>
<td>UNI EN 918</td>
<td>31/03/99</td>
<td>Geotessili e prodotti affini. Prova di punzonamento dinamico (metodo della caduta del cono) (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI EN ISO 10320</td>
<td>2002</td>
<td>Geotessili e prodotti affini: Identificazione in sito</td>
</tr>
</tbody>
</table>
Norme standardizzate sui geotessili

<table>
<thead>
<tr>
<th>Numero norma</th>
<th>Data pubbl.</th>
<th>Titolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNI EN 963</td>
<td>31/03/97</td>
<td>Geotessili e prodotti affini. Campionamento e preparazione dei provini. (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI EN 964-1</td>
<td>31/03/97</td>
<td>Geotessili e prodotti affini. Determinazione dello spessore a pressioni stabilite. Strati singoli. (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI EN 965</td>
<td>30/09/97</td>
<td>Geotessili e prodotti affini. Determinazione della massa areica. (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI EN ISO 9863-2</td>
<td>30/06/98</td>
<td>Geotessili e prodotti affini. Determinazione dello spessore a pressioni stabilite. Procedura per la determinazione dello spessore dei singoli strati di prodotti multistrato. (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI EN ISO 10319</td>
<td>30/09/98</td>
<td>Geotessili: Prova di trazione a banda larga. (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI EN ISO 10321</td>
<td>30/09/98</td>
<td>Geotessili: Prova di trazione a banda larga per giunzioni e cuciture. (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI ENV 12226</td>
<td>30/09/98</td>
<td>Geotessili e prodotti affini. Prove generali per valutazioni successive a prove di durabilità. (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI EN ISO 12236</td>
<td>31/03/99</td>
<td>Geotessili e prodotti affini. Prova di punzonamento statico (metodo CBR) (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI EN 918</td>
<td>31/03/99</td>
<td>Geotessili e prodotti affini. Prova di punzonamento dinamico (metodo della caduta del cono) (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI ENV 1897</td>
<td>31/03/99</td>
<td>Geotessili e prodotti affini. Determinazione delle proprietà di viscosità a compressione (compressive creep) (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI ENV 12447</td>
<td>30/04/00</td>
<td>Geotessili e prodotti affini. Metodo di prova per la determinazione della resistenza all'idrolisi (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI ENV ISO 13438</td>
<td>31/07/00</td>
<td>Geotessili e prodotti affini. Metodo di prova per la determinazione della resistenza all'ossidazione (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI ENV ISO 10722-1</td>
<td>30/04/01</td>
<td>Geotessili e prodotti affini. Procedura per la simulazione del danneggiamento durante la messa in opera</td>
</tr>
</tbody>
</table>
Linee guida per la verifica ed il collaudo delle barriere impermeabili per la messa in sicurezza di siti contaminati

<table>
<thead>
<tr>
<th>Norma</th>
<th>Data pubbl.</th>
<th>Titolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNI EN 12224</td>
<td>30/09/01</td>
<td>Geotessili e prodotti affini. Determinazione della resistenza agli agenti atmosferici (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI EN 12225</td>
<td>30/09/01</td>
<td>Geotessili e prodotti affini. Metodo per la determinazione della resistenza microbiologica mediante prova di interramento (Codice ICS: 07.100.99 59.080.70)</td>
</tr>
<tr>
<td>UNI EN ISO 12956</td>
<td>30/09/01</td>
<td>Geotessili e prodotti affini. Determinazione della dimensione di apertura (opening size) caratteristica (Codice ICS: 59.080.70)</td>
</tr>
<tr>
<td>UNI EN 13249</td>
<td>30/11/01</td>
<td>Geotessili e prodotti affini. Caratteristiche richieste per l'impiego nella costruzione di strade e di altre aree soggette a traffico (escluse ferrovie e l'inclusione in conglomerati bituminosi) (Codice ICS: 59.080.70 93.080.20)</td>
</tr>
<tr>
<td>UNI EN 13257</td>
<td>04/01/02</td>
<td>Geotessili e prodotti affini - Caratteristiche richieste per l'impiego in discariche per rifiuti solidi</td>
</tr>
<tr>
<td>prEN 14196</td>
<td>in corso di approvazione</td>
<td>Geosynthetics – Test methods for measuring mass per unit area of clay geosynthetics barriers</td>
</tr>
</tbody>
</table>

Norme standardizzate sui non tessuti

<table>
<thead>
<tr>
<th>Numero norma</th>
<th>Data pubbl.</th>
<th>Titolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNI 8279-1</td>
<td>01/12/85</td>
<td>Nontessuti. Metodi di prova. Campionamento. (Codice ICS:59.080.30)</td>
</tr>
<tr>
<td>UNI 8279-1/A1</td>
<td>01/05/91</td>
<td>Nontessuti. Metodi di prova. Campionamento. (Codice ICS: 59.080.30)</td>
</tr>
<tr>
<td>UNI 8279-3</td>
<td>31/12/83</td>
<td>Nontessuti. Metodi di prova. Determinazione della permeabilità all'aria. (Codice ICS: 59.080.30)</td>
</tr>
<tr>
<td>UNI 8279-4</td>
<td>28/02/84</td>
<td>Nontessuti. Metodi di prova. Prova di trazione (metodo di Grab) - (Codice ICS: 59.080.30)</td>
</tr>
<tr>
<td>UNI 8279-5</td>
<td>28/02/84</td>
<td>Nontessuti. Metodi di prova. Determinazione dell'assorbimento di liquidi (metodo del cestello) - (Codice ICS: 59.080.30)</td>
</tr>
<tr>
<td>UNI 8279-6</td>
<td>28/02/84</td>
<td>Nontessuti. Metodi di prova. Determinazione dell' assorbimento di liquidi (metodo della rete) - (Codice ICS: 59.080.30)</td>
</tr>
</tbody>
</table>
Linee guida per la verifica ed il collaudo delle barriere impermeabili per la messa in sicurezza di siti contaminati

<table>
<thead>
<tr>
<th>Numero norma</th>
<th>Data pubbl.</th>
<th>Titolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNI 8279-7</td>
<td>28/02/84</td>
<td>Nontessuti. Metodi di prova. Determinazione dell'ascensione capillare. (Codice ICS: 59.080.30)</td>
</tr>
<tr>
<td>UNI 8279-11</td>
<td>31/01/85</td>
<td>Nontessuti. Metodi di prova. Determinazione della resistenza alla perforazione con il metodo della sfera. (Codice ICS: 59.080.30)</td>
</tr>
<tr>
<td>UNI 8279-12</td>
<td>31/01/85</td>
<td>Nontessuti. Metodi di prova. Determinazione della variazione dimensionale a caldo. (Codice ICS: 59.080.30)</td>
</tr>
<tr>
<td>UNI 8279-13</td>
<td>31/01/85</td>
<td>Nontessuti. Metodi di prova. Determinazione del coefficiente di permeabilità radiale all'acqua. (Codice ICS: 59.080.30)</td>
</tr>
<tr>
<td>UNI 8279-14</td>
<td>30/04/85</td>
<td>Nontessuti. Metodi di prova. Determinazione della resistenza al punzonamento e della deformazione a rottura (metodo della penetrazione) - (Codice ICS: 59.080.30)</td>
</tr>
<tr>
<td>UNI SPERIMENTALE 8279-16</td>
<td>01/09/87</td>
<td>Nontessuti. Metodi di prova. Determinazione del tempo di assorbimento di acqua (metodo della goccia) - (Codice ICS: 59.080.30)</td>
</tr>
<tr>
<td>UNI 8279-17</td>
<td>30/09/89</td>
<td>Nontessuti. Metodi di prova. Determinazione della stabilità agli agenti atmosferici artificiali. (Codice ICS: 59.080.30)</td>
</tr>
</tbody>
</table>

Norme standardizzate varie

<table>
<thead>
<tr>
<th>Numero norma</th>
<th>Data pubbl.</th>
<th>Titolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNI 10006</td>
<td>2002</td>
<td>Costruzione e manutenzione delle strade – Tecniche di impiego delle terre.</td>
</tr>
<tr>
<td>UNI 10014</td>
<td>1964</td>
<td>Prove sulle terre. Determinazione dei limiti di consistenza (o di Atterberg) di una terra.</td>
</tr>
</tbody>
</table>
APPENDICE 3 – NORME ASTM

<table>
<thead>
<tr>
<th>Norma</th>
<th>Titolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1238-01e1</td>
<td>Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer</td>
</tr>
<tr>
<td>D1505-98e1</td>
<td>Standard Test Method for Density of Plastics by the Density-Gradient Technique</td>
</tr>
<tr>
<td>D1556-00</td>
<td>Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method</td>
</tr>
<tr>
<td>D1557-02</td>
<td>Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³(2,700 kN-m/m³))</td>
</tr>
<tr>
<td>D1587-00</td>
<td>Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes</td>
</tr>
<tr>
<td>D1693-01</td>
<td>Standard Test Method for Environmental Stress-Cracking of Ethylene Plastics</td>
</tr>
<tr>
<td>D2216-98</td>
<td>Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass</td>
</tr>
<tr>
<td>D2487-00</td>
<td>Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System)</td>
</tr>
<tr>
<td>D2922-01</td>
<td>Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)</td>
</tr>
<tr>
<td>D3017-01</td>
<td>Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)</td>
</tr>
<tr>
<td>Number</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>D4318-00</td>
<td>Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils</td>
</tr>
<tr>
<td>D4373</td>
<td>Standard Test Method for Rapid Determination of Carbonate Content of Soils</td>
</tr>
<tr>
<td>D4437-99</td>
<td>Standard Practice for Determining the Integrity of Field Seams Used in Joining Flexible Polymeric Sheet Geomembranes</td>
</tr>
<tr>
<td>D4491-99a</td>
<td>Standard Test Methods for Water Permeability of Geotextiles by Permittivity</td>
</tr>
<tr>
<td>D4595</td>
<td>Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method</td>
</tr>
<tr>
<td>D4632</td>
<td>Standard Test Method for Grab Breaking Load and Elongation of Geotextiles</td>
</tr>
<tr>
<td>D4716-01</td>
<td>Method for Determining the (In-plane) Flow Rate per Unit Width and Hydraulic Transmissivity of a Geosynthetic Using a Constant Head</td>
</tr>
<tr>
<td>D4751-99a</td>
<td>Standard Test Method for Determining Apparent Opening Size of a Geotextile</td>
</tr>
<tr>
<td>D4833-00e1</td>
<td>Standard Test Method for Index Puncture Resistance of Geotextiles, Geomembranes, and Related Products</td>
</tr>
<tr>
<td>D4972-01</td>
<td>Standard Test Method for pH of Soils</td>
</tr>
<tr>
<td>D5035-95</td>
<td>Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method</td>
</tr>
<tr>
<td>D5084-00e1</td>
<td>Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter</td>
</tr>
<tr>
<td>D5199-01</td>
<td>Standard Test Method for Measuring the Nominal Thickness of Geosynthetics</td>
</tr>
<tr>
<td>D5261-92</td>
<td>Standard Test Method for Measuring Mass per Unit Area of Geotextiles</td>
</tr>
<tr>
<td>Standard Test Methods</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>D5887</td>
<td>Standard Test Method for Measurement of Index Flux Through Saturated Geosynthetic Clay Liner Specimens Using a Flexible Wall Permeameter</td>
</tr>
<tr>
<td>D5993-99</td>
<td>Standard Test Method for Measuring Mass Per Unit of Geosynthetic Clay Liners</td>
</tr>
<tr>
<td>D638-02a</td>
<td>Standard Test Method for Tensile Properties of Plastics</td>
</tr>
<tr>
<td>D6496-99</td>
<td>Standard Test Method for Determining Average Bonding Peel Strength Between the Top and Bottom Layers of Needle-Punched Geosynthetic Clay Liners</td>
</tr>
<tr>
<td>D6768-03</td>
<td>Standard Test Method for Tensile Strength of Geosynthetic Clay Liners</td>
</tr>
<tr>
<td>D698-00a</td>
<td>Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³))</td>
</tr>
<tr>
<td>D751-00</td>
<td>Standard Test Methods for Coated Fabrics</td>
</tr>
<tr>
<td>D4547-91</td>
<td>Standard practice for sampling waste and soils for volatile organics</td>
</tr>
<tr>
<td>D-4696</td>
<td>Guide for pore-liquid sampling from the vadose zone</td>
</tr>
</tbody>
</table>
APPENDICE 4 – PROVE DI PERMEABILITÀ IN SITO IN MEZZI POCO PERMEABILI

Permeametro di Boutwell

Lo schema della prova è rappresentato in Figura 1 e consiste nell'introdurre l'apparecchiatura in un foro, sigillando lo spazio anulare residuo. Si procede ad una prima prova a carico variabile (a) nella quale il flusso idrico avviene dalla sola base e ricavando la conducibilità idraulica mediante la seguente relazione (Daniel D.E., 1989).

\[k_1 = \frac{\pi \cdot d^2}{11 \cdot D \cdot (t_2 - t_1)} \ln(H_1/H_2) \]

essendo \(H_1 \) e \(H_2 \) (m) i livelli idrici rispettivamente ai tempi \(t_1 \) e \(t_2 \) (s) e considerando gli altri parametri geometrici come indicato in Figura 1.

La prova si ritiene conclusa quando il valore di \(k_1 \) si stabilizza nel tempo. Successivamente si procede ad una approfondimento della strumentazione (b), mediante infissione o esecuzione di una trivellazione di piccolo diametro con rimozione del materiale rimaneggiato di fondo, e all'esecuzione di altre prove con flusso in direzione radiale (dalla base e dalle pareti), ricavando anche in questo caso il valore di conducibilità idraulica dalla relazione:

\[k_2 = \frac{A}{B} \ln(H_1/H_2) \]

essendo:

\[A = d^2 \left[\ln\left(\frac{L}{D}\right) + \left(1 + \frac{L^2}{D^2}\right)^{0.5}\right] \]

\[B = D \frac{L}{D} (t_2 - t_1) \left[1 - 0.562 \exp\left(-1.57 \frac{L}{D}\right)\right] \]
Si ritiene conclusa questa seconda fase quando il valore di \(k_2 \) si stabilizza nel tempo.

Conoscendo i valori di \(k_1, k_2, L \) e \(D \) è possibile ricavare dal diagramma di Figura 2 il valore del parametro \(m \) dato da:

\[
m = \left(\frac{kh}{kv} \right)^{0.5}
\]

Figura 1 – Schema della prova con il permeametro Boutwell: prima fase (a), seconda fase (b)

Figura 2 – Diagramma per il calcolo del parametro \(m \)
Pertanto è possibile calcolare le componenti orizzontale e verticale della conduttività idraulica:

\[k_h = m \cdot k_1 \]

\[k_v = \frac{1}{m} \cdot k_1 \]

Poiché il volume di terreno investigato è piccolo, talvolta non può essere significativo del flusso esistente attraverso i macropori e le fessure di una barriera; in alcuni casi può fornire risultati non indicativi delle condizioni di campo.

Infiltrometri

Un infiltrometro è costituito da un elemento cilindrico secondo gli schemi indicati in Figura 3 che si infigge nel terreno e nel quale si aggiunge un volume d'acqua, misurandone la variazione di livello nel tempo.

![Figura 3 – Tipologie di infiltrometri](image)

Si possono effettuare misure a carico variabile e costante.

Nell'infiltrometro semplice aperto un cilindro di superficie A (m²) viene infisso nel terreno e si introduce un volume V di acqua (m³) nel tempo t (s) misurandone il livello nell'anello con indicatore di livello a punta affiorante.

Conoscendo il tasso di infiltrazione I e il gradiente idraulico i, la conduttività idraulica è data dalla relazione:
k = \frac{l}{i}

l = \frac{V}{At}

i = \frac{H + LF}{Lf}

in cui H è la profondità dell'acqua nel cilindro (m) e Lf la profondità del fronte umido (m).

La profondità del fronte umido deve essere verificata mediante tensiometro o mediante inserimento di un tubo nel sottosuolo e misura del contenuto idrico.

I maggiori problemi sono costituiti dall'evaporazione e dalla misura di flussi ridotti; inoltre quando l'acqua passa al di sotto del cilindro metallico il flusso diventa radiale provocando una scarsa verificabilità della conducibilità verticale.

Si registrano infine difficoltà nella misura di valori di conducibilità idraulica inferiori a 10^{-8} m/s.

Con l'infiltrometro a doppio anello aperto, che consiste in due cilindri coassiali di diametro rispettivamente di 60,96 e 30,38 cm e di altezza di 50,8 cm, viene misurato il volume V del liquido aggiunto per mantenere costante il livello dell'acqua H nel cilindro interno e nell'intercapeidine nell'intervallo di tempo t.

La conducibilità idraulica viene calcolata con la relazione precedente.

Il flusso idrico è verticale mantenendo lo stesso livello idrico nel cilindro interno e in quello esterno.

Il limite di applicabilità del metodo è costituito dall'intervallo di conducibilità compreso tra 10^{-4} e 10^{-8} m/s; al di fuori di tale intervallo i valori ottenuti sono inaffidabili.

Nell'infiltrometro ad anello singolo sigillato viene misurata il volume idrico V, l'altezza dell'acqua H e la profondità del flusso Lf nel suolo secondo lo schema di Figura 4.

La conducibilità viene calcolata mediante la relazione sopra riportata. Il principale problema di questo sistema è costituito dagli effetti termici e, come nell'infiltrometro semplice aperto, nell'assenza di flusso verticale al di sotto dell'anello.
L'infiltrometro a doppio anello sigillato viene applicato nell'intervallo di conducibilità idraulica di 10^{-7} e 10^{-10} m/s.

I valori misurati possono essere da 1 a 10 volte superiori a quelli verificati in laboratorio su campioni.

L'anello deve essere al minimo di 60,96 cm e una pari distanza deve essere mantenuta tra l'anello interno sigillato e quello esterno (Figura 5).

Entrambi gli anelli vengono infissi nel terreno e sigillati; si procede poi all'introduzione di acqua fino a quando l'anello interno sigillato viene sommerso.

La pressione dell'acqua negli anelli è mantenuta identica in modo tale da assicurare un flusso idrico verticale.

Il tasso di infiltrazione viene misurato collegando un sacco flessibile riempito da un peso noto d'acqua ad una uscita dall'anello interno. Dopo un intervallo noto di tempo il sacco flessibile viene rimosso e pesato. L'infiltrazione è determinata dal volume di acqua V, dalla superficie dell'anello interno A e dall'intervallo di tempo t.

La profondità del fronte umido viene determinata con tensiometri e con campioni di terreno prelevati alla fine della prova.

Il calcolo della conducibilità idraulica viene eseguito con la stessa relazione precedentemente riportata.
Figura 5 - Infiltrometro doppio ad anello interno sigillato

Il permeametro ad entrata d'aria (Bouwer H., 1978) consiste in un anello di 60,96 cm di diametro che viene infisso nel terreno come indicato in Figura 6.

In una prima fase si determina la conducibilità idraulica utilizzando questa apparecchiatura come un infiltrometro semplice sigillato.

In una seconda fase viene chiusa la valvola che permette la misura del flusso idrico e si sigilla l'infiltrometro.

Si instaura una pressione negativa che può essere misurata al vacuometro e l'esperienza viene ultimata quando si legge il valore massimo a questo strumento.

A questo istante, l'apparecchiatura è smontata e si misura la profondità del fronte umido L_f.

Con riferimento ai parametri geometrici indicati in Figura 6, la conducibilità idraulica è data dalla relazione:

$$k = \frac{I \cdot L_f}{H + L_f + \Psi_f}$$

in cui $I = \frac{V}{At}$ nella prima fase della misura e Ψ_f è dato dalla relazione:

$$\Psi_f = 0.5 \cdot \frac{u_w}{\gamma_w} + L_f + G$$
essendo u_w (kg/m²) la pressione minima (in segno negativo) misurata dal manometro posto a distanza G dal piano campagna.

![Diagram of permeameter with air inlet](image)

Figura 6 – Permeametro ad entrata d’aria

In base alla letteratura, sono stati misurati in laboratorio valori di k di una volta e mezzo inferiori a quelli misurati con il permeametro ad entrata d’aria.

In sintesi si osserva che le prove eseguite con infiltrometro a doppio anello sigillato possono consentire una buona misura di mezzi con conducibilità idraulica inferiore a 10^{-9} m/s.

- possibilità di misura di valori di k inferiori a 10^{-9} m/s;
- requisiti minimi per il personale esperto;
- poche ambiguità nel metodo sperimentale;
- il ridotto costo consente diverse misure per la verifica della variabilità spaziale di k;
- esame di una sufficiente estensione di superficie in modo tale da ricoprire statisticamente un numero di macropori per unità di area;
- tempo sufficiente per eseguire in pratica la misura.
In alcuni interventi di bonifica risulta opportuno controllare anche la complessa migrazione delle acque e dei soluti nel mezzo insaturo.

Possono essere utilizzati strumenti ed apparecchiature che dal punto di vista quantitativo indicano il contenuto idrico del terreno e dal punto di vista qualitativo consentono il prelievo di acque per le successive determinazioni analitiche.

Misure di contenuto idrico

Esistono diversi sistemi che consentono di determinare l’umidità del terreno, misurando alcune proprietà collegate al suo contenuto idrico.

Essi sono costituiti da:
- Blocchetti di gesso. Sono blocchetti di gesso poroso assorbente che si mantiene in equilibrio con l’umidità del terreno circostante. All’interno del blocchetto sono localizzati due elettrodi mediante i quali si misura la resistività (mediante corrente alternata ad alta frequenza) che è in relazione all’umidità del gesso, in equilibrio con quella del terreno.
- Celle in vetroresina. Sono costituite da un corpo poroso in vetroresina, da una coppia di elettrodi in lega anticorrosiva e da un termistore. Viene effettuata una misura della resistività che risulta proporzionale all’umidità della vetroresina e del terreno limitrofo con cui risulta in equilibrio; si può effettuare la correzione per le condizioni termiche del terreno sulla base della temperatura letta al termistore.
- Psicrometri a termocoppia. Misurano mediante dei sensori l’umidità del terreno entro un campo di variazione di 0.0-9.2 bar.
- Sensori dielettrici. Lo strumento è costituito da una coppia di sensori elettrici che sono posti a contatto con il terreno e mediante i quali si determina la sua costante dielettrica; la matrice solida ha una costante dielettrica 20-40 volte inferiore a quella dell’acqua.
- Sensori a dissipazione di calore. Viene prodotto calore all’interno di un corpo poroso di un apposito strumento, di conduttività termica analoga a quella del mezzo insaturo e si misura la sua dissipazione mediante sensori; il corpo poroso rimane in equilibrio con il terreno da cui assorbe l’umidità.
- Tensiometri. Sono gli strumenti tradizionali più diffusi e sono costituiti da una coppia porosa e da un circuito idraulico di saturazione e di spurgo nel campo di variazione di 0-0.9 bar; viene misurata la suzione (o potenziale matriciale) e mediante calibrazione si può determinare l’umidità del terreno.

Prelievo di campioni di acqua

Le apparecchiature che consentono di prelevare le acque interstiziali sono costituite dai lisimetri che a loro volta sono suddivisi in attivi e passivi.
LISIMETRI ATTIVI

Lo strumento consiste in un tubo di lunghezza variabile con un tratto di materiale poroso in punta o nella sua parte mediana grazie al quale, una volta posizionato alla profondità desiderata, risulta idraulicamente collegato con i pori del terreno.

Con questo strumento producendo il vuoto all'interno del tubo, è possibile creare una suzione nel terreno circostante superiore alle forze di tensione dell'acqua presente nei pori e quindi un gradiente di pressione che richiama il fluido interstiziale dal terreno all'interno del tubo. Da qui può essere infine estratto con semplici procedimenti.

L'utilizzo di un lisimetro attivo consente di campionare essenzialmente le sole soluzioni acquose del terreno. I campioni ottenuti con questo metodo rispecchiano la composizione chimica dell'acqua presente nei pori tra loro intercomunicanti, per cui i valori di concentrazione ottenuti dai campioni idrici sono variabili in funzione del grado di saturazione del terreno, dell'intensità della tensione capillare in esso presente ed infine del valore di suzione applicata al terreno mediante la coppia porosa.

Il volume di acqua che può essere ottenuto mediante campionamento con lisimetri attivi è comunque generalmente limitato.

Sono disponibili diversi tipi di lisimetri attivi, le cui caratteristiche sono descritte nella Tabella 1, tuttavia i modelli principali sono sostanzialmente di tre tipi.

<table>
<thead>
<tr>
<th>Tipologia dei campionatori</th>
<th>Materiale della sezione porosa</th>
<th>Dimensione massima dei pori (μm)</th>
<th>Pressione d'ingresso dell'aria (cbar)</th>
<th>Campo operativo di suzione (cbar)</th>
<th>Profondità massima d'utilizzo (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lisimetri a depressione</td>
<td>Ceramic da 1.2 a 3.0</td>
<td>> 100</td>
<td>< 60 a 80</td>
<td>< 7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PTFE da 15 a 30</td>
<td>da 10 a 21</td>
<td>< 10 a 21</td>
<td>< 7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acciaio inossidabile</td>
<td>Non disponibile</td>
<td>da 49 a 5</td>
<td>da 49 a 5</td>
<td>< 7.5</td>
</tr>
<tr>
<td>Lisimetri a pressione</td>
<td>Ceramic da 1.2 a 3.0</td>
<td>> 100</td>
<td>< 60 a 80</td>
<td>< 15</td>
<td></td>
</tr>
<tr>
<td>pressione depressione</td>
<td>PTFE da 15 a 30</td>
<td>da 10 a 21</td>
<td>< 10 a 21</td>
<td>< 15</td>
<td></td>
</tr>
<tr>
<td>Lisimetri ad alta</td>
<td>Ceramic da 1.2 a 3.0</td>
<td>> 100</td>
<td>< 60 a 80</td>
<td>< 91</td>
<td></td>
</tr>
<tr>
<td>pressione depressione</td>
<td>PTFE da 15 a 30</td>
<td>da 10 a 21</td>
<td>< 10 a 21</td>
<td>< 91</td>
<td></td>
</tr>
<tr>
<td>Campionatori con punta a filtro</td>
<td>Polietilene Non disponibile</td>
<td>Non disponibile</td>
<td>Non disponibile</td>
<td>Non disponibile</td>
<td>Nessuno</td>
</tr>
<tr>
<td></td>
<td>Ceramic da 2 a 3</td>
<td>> 100</td>
<td>< 60 a 80</td>
<td>< 7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acciaio inossidabile</td>
<td>Non disponibile</td>
<td>Non disponibile</td>
<td>Non disponibile</td>
<td>Nessuno</td>
</tr>
<tr>
<td>Campionatori a fibra cava in acetato di cellulosa</td>
<td>Cellulosa < 2.8</td>
<td>> 100</td>
<td>< 60 a 80</td>
<td>< 7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetato</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non cellulosico</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polimero < 2.8</td>
<td>> 100</td>
<td>< 60 a 80</td>
<td>< 7.5</td>
<td></td>
</tr>
<tr>
<td>Campionatore</td>
<td>Cellulosa < 2.8</td>
<td>> 100</td>
<td>< 60 a 80</td>
<td>< 7.5</td>
<td></td>
</tr>
</tbody>
</table>
Linee guida per la verifica ed il collaudo delle barriere impermeabili per la messa in sicurezza di siti contaminati

con filtro	Acetato	PTFE	da 2 a 5	Non disponibile	Non disponibile	< 7.5
con disco a depressione	Alundum	Non disponibile	Non disponibile	Non disponibile	< 7.5	
Ceramica	da 1.2 a 3.0	> 100	< 60 a 80	< 7.5		
Vetro poroso	da 4 a 5.5	Non disponibile	Non disponibile	< 7.5		
Acciaio inossidabile	Non disponibile	da 49 a 5	da 49 a 5	< 7.5		

Lisimetro attivo a depressione

Lo strumento, illustrato in Figura 1, è completato con un singolo tubo, generalmente del diametro di 1/8", che ne raggiunge il fondo e che viene collegato in superficie ad una bottiglia campionatrice. Il vuoto applicato alla bottiglia campionatrice, si trasmette al lisimetro attivo richiamando l'acqua dal terreno attraverso le pareti porose e da qui in superficie nella bottiglia campionatrice. Il limite operativo dello strumento è fino a 6 m di profondità.

![Figura 1 - Lisimetro a vuoto (ASTM, 1992)](image)

Lisimetro attivo a depressione-pressione

Lo strumento, illustrato in Figura 2, è collegato in superficie mediante due tubi, generalmente del diametro di 1/4", uno per creare alternativamente una depressione od una pressione nel tubo, l'altro per il campionamento; quest'ultimo raggiunge il fondo del tubo.
L'operazione di campionamento avviene aprendo una valvola posta presso la pompa sulla linea depressione/pressione e applicando il vuoto al lisimetro attivo. La valvola viene quindi chiusa e l'apparecchio lasciato in depressione per il periodo necessario affinché si raccolga acqua nella coppa porosa. Il campione viene portato in superficie applicando, con la medesima linea, una pressione al lisimetro attivo che spinge l'acqua nella seconda linea, una volta aperta la valvola su di essa installata, fino alla bottiglia campionatrice.

Qualora lo strumento sia posizionato ad elevate profondità si ha la necessità di applicare una pressione nella fase di recupero che può forzare parte del campione fuori dalla coppa porosa o, in casi estremi, danneggiando la stessa coppa porosa o compromettere il contatto idraulico col terreno; anche una applicazione troppo rapida della pressione comporta effetti analoghi.

Per tale ragione l'impiego di questo tipo di lisimetro modello è utile fino alla profondità massima di 15 m.

Esistono anche versioni modificate di tale tipo di lisimetro attivo le quali permettono di limitare il tempo di contatto del campione con la coppa porosa, oppure che, avendo il setto poroso a metà dello strumento anziché in punta, limitano la possibilità di perdere parte del campione attraverso la coppa porosa in fase di recupero.

![Diagram](image.png)

Figura 2 - Lisimetro a vuoto e pressione (ASTM, 1992)
Lisimetro attivo a depressione-alta pressione

Come nel lisimetro a depressione-pressione lo strumento comunica con la superficie mediante due tubi, generalmente del diametro di 1/4", uno per operare la depressione/pressione, l'altro per il campionamento, come illustrato in Figura 3.

Se ne differenzia in quanto la parte terminale del lisimetro attivo dotata di coppa porosa è separata dal resto dello strumento mediante un setto che, attraversato da un tubo munito di valvola, permette al fluido il solo movimento di risalita alla camera superiore. All'interno di tale camera arrivano le due linee rispettivamente di depressione/pressione e di campionamento, la prima alla parte superiore, la seconda sul fondo.

L'operazione di campionamento avviene con le medesime modalità illustrate nel modello a vuoto-pressione, ma in questo strumento la depressione applicata richiama l'acqua nella coppa porosa e da qui direttamente alla camera superiore, dove si raccoglie.

Il campione viene quindi portato in superficie applicando una pressione che spinge l'acqua dalla camera nella seconda linea fino alla bottiglia campionatrice.

Questo apparecchio permette di applicare pressioni anche elevate per far risalire il campione evitando possibili perdite di fluido o danneggiamenti della coppa porosa e/o del dreno circostante.

Viene consigliato il suo utilizzo fino a profondità di 46 m, ma in letteratura sono descritte installazioni fino a 91 m.
Figura 3 - Lisimetro a vuoto per alte pressioni (ASTM, 1992)

Per quanto riguarda i materiali utilizzati, il tubo può essere in PVC, PTFE (Teflon), nylon o altro materiale e la coppa porosa è generalmente in ceramica, alternativamente in PTFE (Teflon), ossido di alluminio od altri materiali.

Sono anche in commercio modelli in cui tutta l'apparecchiatura, compresa la coppa porosa ed i tubi di collegamento, sono costruiti in acciaio inossidabile od in PTFE; questi vengono consigliati per il campionamento di pesticidi e virus in quanto non alterano i valori di pH e presentano bassa predisposizione all'adsorbimento ed all'intasamento.

Altri tipi di lisimetri

Numerose sono le varianti dei modelli base precedentemente descritti proposte in letteratura.

Tra queste si ricordano alcuni lisimetri attivi a vuoto-pressione multipli che vengono installati solidalmente con un piezometro di controllo, denominati lisimetri a manicotto, o in un unico corpo, detti lisimetri a tubo.

Sono stati messi a punto anche strumentazioni dotate di una coppa porosa nella parte sommitale, altre a forma di piastra o di membrana vengono installate al di sotto di superfici indisturbate, altre ancora costituite di membrane oppure dalla sola punta porosa. In quest'ultimo strumento, denominato lisimetro attivo con punta a filtro, i campioni vengono raccolti mediante una fialetta campionatrice in cui è stato creato il vuoto. La fialetta viene calata utilizzando una guida dotata di ago ipodermico a due punte fino alla coppa porosa installata nel terreno. L'ago fora le guaine che chiudono rispettivamente la coppa porosa e la fialetta ed il liquido viene richiamato in quest'ultima che, periodicamente, viene sostituita. Le fialette hanno la dimensione standard di 35 ml ma, collegate in serie, possono raggiungere i 500 ml di volume.

Data la modalità di campionamento questo strumento non ha in teoria alcun limite di profondità.

Limiti di funzionamento dei lisimetri attivi

Per quanto riguarda i limiti di funzionamento dei lisimetri attivi, la capacità dei menischi capillari di sopportare la suzione decresce all'aumento delle dimensioni dei pori e della idrofobicità della coppa porosa. Tale capacità viene indicata mediante una grandezza caratteristica denominata pressione d'ingresso dell'aria che traduce il comportamento della coppa porosa.

Coppe porose con basse pressioni d'ingresso dell'aria possono essere utilizzate solo per campionare in terreni con basse tensioni capillari, quindi prossimi alla saturazione.
In quei lisimetri in cui la pressione d'ingresso dell'aria raggiunge i 600 mbar, la
tessitura del terreno e le tensioni capillari controllano sia la quantità di fluido che può
essere rimossa sia il raggio d'influenza dello strumento.

In terreni umidi una sabbia presenta una maggior pendenza della curva di ritenzione
rispetto all'argilla per cui, a parità di variazione di pressione, la prima rilascia maggiori
quantità di acqua. Per contro il fatto che al crescere delle tensioni capillari la curva
dell'argilla mantenga una certa pendenza, mentre quella della sabbia tenda
all'orizzontale, indica che l'argilla rilascia maggiori quantità di liquido e che ad elevate
tensioni capillari non è possibile ottenere campioni da una sabbia.

In pratica al di sopra di 600 mbar di depressione per terreni grossolani e di 800 mbar
per terreni fini le velocità dell'acqua nel terreno sono nulle e non è possibile effettuare
campionamenti.

Qualora invece si utilizzi un materiale con bassa pressione d'ingresso dell'aria,
inferiore a 600 mbar di depressione, lo stesso lisimetro attivo diventa il fattore
limitante del campionamento al prosciugarsi del terreno in quanto l'alta suzione
necessaria per rimuovere il campione comporta la rottura dei menischi capillari del
setto poroso e l'ingresso di aria nel lisimetro.

La velocità con la quale si raccoglie la soluzione nei lisimetri attivi dipende quindi
dallo stato idrico del terreno, dalla sua conducibilità idraulica, dall'entità della ricarica
e dal valore di suzione creato.

A titolo d'esempio, in terreni limosi e limoso-argillosi con ghiaia sono stati campionati
in circa 24 ore, con 600 mbar di depressione, 200-300 ml o soli pochi millilitri
rispettivamente in prossimità della capacità di campo e immediatamente al di sotto di
essa.

Invece in terreni sabbiosi soggetti ad irrigazione sono stati ottenuti 50-400 ml in 8 ore.

Al termine di operazioni di irrigazione e di spagliamento su terreni sabbiosi e limoso-
argillosi sono stati ottenuti fino a 1500 ml in 24 ore.

Il raggio d'influenza di un lisimetro attivo, rappresentato dal volume all'interno del
quale risulta alterato il normale flusso idrico, viene determinato dalla depressione
operata, dalle caratteristiche del terreno e dalla sezione della coppa porosa. A tal
proposito sono stati misurati valori di circa 10 cm in terreni grossolani e di 92 cm in
terreni fini.

Si osserva che i fluidi che costituiscono i campioni provengono dai macropori o dai
micropori rispettivamente in condizioni di bassa od alta suzione; inoltre la
composizione del liquido contenuto nei macropori e nelle fratture è diversa da quella
del liquido contenuto nei micropori in quanto il flusso inquinante può fluire attraverso i
primi senza interessare i secondi. In particolare nei periodi asciutti i campionatori
hanno un raggio di misura superiore e drenano i micropori raccogliendo basse
quantità di liquido, mentre in periodi umidi vengono drenati i macropori in un raggio
d'influenza più ristretto.
Poiché i campionamenti avvengono con suzioni decrescenti nel tempo, la composizione del campione è quella media dei liquidi rilasciati dal terreno nel range di suzione applicata.

Tale media deve però essere pesata rispetto alle porzioni di fluido raccolte in quanto al decrescere della suzione diminuisce il flusso idrico.

Per quanto riguarda l'aspetto temporale, i campioni raccolti rappresentano la media temporale del flusso chimico che ha attraversato il terreno durante il periodo di campionamento e che presenta spesso ampie escursioni.